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Abstract

While all-optical networks offer large bandwidth for transferring data, the control mech-
anisms to dynamically establish all-optical paths incur large overhead. In this paper, we
consider adapting all-optical multiplexed networks in multiprocessor or multicomputer en-
vironment by using compiled communication as an alternative to dynamic network control.
Compiled communication eliminates the runtime overhead by managing network resources
statically. Thus, it can employ complex off-line algorithms to improve resource utilization.
We studied several off-line connection scheduling algorithms for minimizing the multi-
plexing degree required to satisfy communication requests. The performance of compiled
communication is evaluated and compared with that of dynamically controlled communica-
tion for static communications in a number of application programs. Our results show that
compiled communication out—performs dynamic communication to a large degree. Since
most of the communication patterns in scientific applications are static, we conclude that
compiled communication is an effective mechanism for all-optical networks in multiproces-
sor environments.

Keyword: Compiled Communication, Time-division Multiplexing, Interconnection Network,
All-optical.

1 Introduction

With the increasing computation power of parallel computers, interprocessor communication
has become an important factor that limits the performance of parallel computers. Due to
their capability of offering large bandwidth and low latency, all-optical interconnection net-
works are considered promising networks for future massively parallel computers. In all-optical
networks, communications are carried out in a pure circuit—switching fashion in order to avoid
electronic/optical or optical/electronic conversions at intermediate nodes. Specifically, packet
switching techniques, which are usually used in electronic multicomputer and multiprocessor
interconnection networks, are at a disadvantage when optical transmission is used. The lack of
suitable photonic logic devices makes it extremely inefficient to process packet routing infor-
mation in the photonic domain. Moreover, conversion of this information into the electronic
domain increases the latency at intermediate nodes relative to the internode propagation delay.



Although this optical/electronic conversion may be acceptable for large distributed networks
[4], it represents a disadvantage for multiprocessor networks in which internode propagation
delays are very small.

Multiplexing techniques are used in optical networks to fully utilize the large bandwidth
of optics. Multiplexing enables multiple virtual channels to be formed on a single link. It
is possible to concurrently establish multiple connections using a single fiber in a multiplexed
network. Therefore for a given topology multiplexing increases the connectivity of the network.
Many research efforts have focussed on two multiplexing techniques for optical interconnec-
tion networks, namely time-division multiplexing (TDM) [12, 13, 14] and wavelength—division
multiplexing (WDM) [1, 4]. TDM multiplexes the links by establishing different virtual chan-
nels during different time slots while WDM multiplexes the links by having different virtual
channels use different wavelengths. By using TDM or WDM, each link can support multiple
channels with each channel operating at a speed close to the electronic processing speed.

While fiber optic networks have the potential for providing large bandwidth, the establish-
ment of all-optical paths from sources to destinations places strict demands on the control of
the interconnection network. Specifically, the network control, be it centralized or distributed,
is usually performed in the electronic domain and thus is very slow in comparison to the large
bandwidth supported by the optical data paths. One way to minimize the control overhead is
to avoid the need for dynamic control by using compiled communication techniques whenever
the communication patterns can be determined statically. This technique eliminates the over-
head of establishing the all-optical paths at runtime. Although compiled communication is
most effective for communication patterns that can be determined at compile time, the use of
compiled communication is expected to improve the overall network performance significantly
since over 95% of the communications in large scientific programs can be determined com-
pletely or parametrically at compile time [10]. Moreover, multiplexing improves the efficiency
of compiled communication by reducing the frequency of network reconfiguration and the need
for inserting additional synchronization operations at reconfiguration points.

In this paper, we investigate the effectiveness of applying compiled communication technique
to time-multiplexed all-optical networks. Several off-line connection scheduling heuristics
are proposed and evaluated. Performance of compiled communication is evaluated for a set
of application programs. We compare the compiled communication with dynamic switching
networks with and without multiplexing. We observe large performance gains when compiled
communication is used for static patterns extracted from a set of programs.

This paper is organized as follows. In Section 2, we briefly describe the time-division
multiplexing technique. The discussion of the compiled communication is presented in Section
3, where heuristics for scheduling connections are described and evaluated. Section 4 compares
the performance of compiled communication with that of dynamic control assuming a torus
topology, and Section 5 presents the conclusion of this work.

2 Time-Division Multiplexing (TDM)

In general, any N x N network, other than a completely connected network, has a limited con-
nectivity in that only subset of the possible N? connections can be established simultaneously
without conflict. For all-optical communication, the network must be capable of establishing



any possible connection in one hop, that is, without intermediate relaying or routing. Hence,
the network must be able to change the connections it supports at different times. We consider
switching networks in which the set of connections that may be established simultaneously,
that is, the state of the network, is selected by changing the contents of hardware registers. An
example of such a network is the two-dimensional torus network shown in Fig. 1, where each
processor is connected to a 5 X 5 electro-optical switch, which is, in turn, connected to four
other switches in a torus topology [14]. By controlling the contents of an electronic control
register, a switch can connect any of its five optical inputs to any of its five optical outputs.
The state of the network is determined by the states of all its switches. The set of connections
that are established in a given network state is called a configuration. A set of connections
is a configuration if no two connections in the set share a common link. Fig. 1 shows the
configuration {(4,1),(5,3),(6,10),(8,9),(11,2)} realized in a 4 x 4 torus.
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Figure 1: configuration (4,1),(5,3),(6,10),(8,9),(11,2).

In order to time—multiplex a network the time domain is divided into a repeated sequence
of K time slots of fixed duration, where K is called the multiplexing degree. If Cy, C3, ...,
C are K configurations for the network, then TDM realizes all the K configurations by
periodically cycling through the K network states with each state establishing the connections
in one configuration. This cycling of states can be accomplished efficiently by using circular
shift registers to control each switch. Note that when K = 1, the network degenerates to
the traditional circuit—switching network. The network control under TDM is synchronous,
that is, a global clock is distributed to each processor in the system to align the time slots.
Many current commercially massively parallel systems, such as CRAY-T3D and CM5, support
a distributed clock that is synchronous in all processors.

Dynamic control of TDM networks can be either centralized or distributed [13]. The cen-
tralized control mechanism uses a single controller to process all the requests and thus it does
not scale with the system size. Since our approach targets large systems, the dynamic control



mechanism is assumed to be distributed. Consequently, a fixed multiplexing degree is assumed
because varying the multiplexing degree with distributed control is too costly to implement
[13]. Distributed dynamic control schemes for TDM networks are discussed in [15, 17].

Compiled communication can be supported in TDM networks by inserting, in to the code ex-
ecuted on the processors, instructions to appropriately set the registers controlling the switches.
Writing onto these registers must be synchronized to avoid non-deterministic network states.
Since the multiplexing degree for the network is controlled by the compiler, different multiplex-
ing degrees can be used in different phases of the parallel program to establish the connections
needed for interprocessor communication.

3 Compiled Communication

Compiled Communication has recently drawn the attention of several researchers [3, 8]. It has
been used in combination with message passing in the iWarp system [6]. Compiled commu-
nication is used for a specific set of patterns while other communications are handled using
message passing. The prototype system described in [3] avoids the cost of supporting mul-
tiple communication models. It relies exclusively upon compiled communication. However,
the performance of this system is severely limited due to frequent dynamic reconfiguration
of the network. In this paper we also assume that the system supports only the compiled
communication model. However, we are able to avoid frequent reconfiguration through TDM.

The communication patterns in an application program can be broadly classified into two
categories: static palterns that can be recognized by the compiler and dynamic patterns that
are only known at run-time. Compiled communication handles the static patterns with high ef-
ficiency and at the same time it provides acceptable performance for dynamic patterns. Since
recent studies [10] have shown that over 95% of the patterns in scientific computations are
statically known, compiled communication provides an eflicient means for handling communi-
cation requests. For the static patterns, compiled communication computes a minimal set of
network configurations that satisfy the requirements of the patterns. For the dynamic patterns,
compiled communication uses a predetermined set of configurations to allow communication
between all processors in the system.

There are many advantages of using compiled communication for handling static patterns.
Since the control algorithms are executed off-line by the compiler, complex strategies to manage
the network resources can be employed. The control network, along with the limitations
in its implementation, such as the head-of-line effect due to single queue [16], is altogether
eliminated. Since no routing decisions are made at runtime, the packet header can also be
eliminated causing the network bandwidth to be utilized more effectively. The combination
of TDM and compiled communication enables the reduction of network synchronization and
reconfiguration overhead. Finally, compiled communication can compute the minimal number
of configurations and hence the multiplexing degree required for the static patterns. In contrast
a dynamic technique must choose a multiplexing degree without any information about the
communication patterns. Thus, dynamic configuration techniques utilize TDM less effectively
than compiled communication.

In order to apply compiled communication to a large scale multiprocessor system, three
main issues must be addressed:



Communication pattern recognition: This issue has been considered by many researchers
since information on communication patterns has been previously used to perform com-
munication optimizations [2, 11, 7, 9]. The stencil compiler for CM-2 recognizes stencil
communication patterns [2]. Chen and Li [11] incorporated pattern extraction mecha-
nism in a compiler to support the use of collective communication primitives. Techniques
for recognizing a broad set of communication patterns were also proposed in [7]. In this
paper we rely upon existing techniques for identifying communication patterns.

Compiling static patterns: Because the communication time in a multiplexed network is
proportional to the multiplexing degree, compiled communication computes the minimal
multiplexing degree required for satisfying the static communication patterns. We have
developed a number of message scheduling algorithms for computing the minimal set
of configurations that satisfy a given set of communication patterns. Note that each
configuration set corresponds to a multiplexing degree. It has been shown that optimal
message scheduling for arbitrary topologies is NP-complete [4]. Therefore our algorithms
are heuristics that are demonstrated to provide good performance. The configurations
found by these heuristics are established using TDM.

Handling dynamic patterns: Compiled communication cannot handle dynamic patterns
efficiently. However, since only a small portion of the communications are dynamic,
some techniques can be used to ensure a correct execution of programs in the present
of dynamic communication patterns without degrading the overall network performance
significantly. Some possible approaches for handling dynamic patterns are as follows.
One approach is to setup all-to-all pattern among all the nodes in the system. This way
each node has a time slot to communicate with every other node. However, establishing
paths for all-to-all communication can be prohibitively expensive for a large system.
Another approach is to use static TDM to embed a logical communication topology into
the physical network and to emulate communications in multihop systems. Detailed
comparison of these approaches is beyond the scope of this paper.

The rest of the section will focus on compiling static pattern through connection scheduling.
Before describing the connection scheduling algorithms in detail, we first present some defini-
tions to formally state the problem of connection scheduling. We denote a connection request
from a source s to a destination d as (s, d).

Definition: A pair of connection requests (s1,dy) and (s2,d3) are said to conflict, if they
cannot be simultaneously established.

Definition: A configuration is a set of connection requests {(s1,d1),(s2,d2), ..., (Sm, dm )}
such that no two requests in the set conflict.

Definition: Given a set of communication requests R = {(s1,d1), (s2,d32), ..., (Sm, dm)}, the
set MC' = {Cq, Cy, ..., C¢ } is a minimal configuration set for R iff:

e cach C; € MC, 1 <1i<{,is a configuration and each request (s;,d;) € R, 1 <1 < m,
is contained in exactly one configuration in M C'; and

o for each pair of configurations C; and C; € M, there exists a request (s;,d;) € C; and
a request (s;,d;) € C; such that (s;,d;) conflicts with (s;, d;).



As discussed in section 2, a minimal configuration set of size K can be supported using a
multiplexing degree of K. Thus, the goal of connection scheduling heuristics is to compute
minimum configuration set for a given request set R. Next we describe three connection
scheduling heuristics.

3.1 Greedy Algorithm

In the greedy algorithm, a configuration is created by repeatedly including additional connec-
tions into the configuration until no additional connection can be established in that configura-
tion. If additional requests remain, another configuration is created. This process is repeated
till all requests have been included in some configuration. The algorithm described is a modifi-
cation of an algorithm proposed in [13]. The algorithm is shown in Fig. 2. The time complexity
of the algorithm is O(|R| X maz;(|C;|) X K), where | R| is the number of the requests, |C;| is the
number of connections in configuration C; and K is the number of configurations generated.

(1) MC=¢ k=1

(2) repeat

(3) Cr=9¢

(4) for each (s;,d;) € R

(5) if (s;,d;) does not conflict
(6) with any connection in Ckg
(7) then

(8) Cr = CxlJ{ (si,di) }
(9) R=R—{ (sd) )
(10) end if

(11) end for

(12) MC = MC [ { Cx }

(13) k=k+1

(14) until R = ¢

Figure 2: The greedy algorithm.

Consider the linearly connected nodes shown in Fig. 3. The result of applying the greedy
algorithm to schedule connection requests set {(0, 2), (1, 3),(3,4), (2, 4)} is shown in Fig. 3(a).
In this case, (0, 2) will be in time slot 1, (1, 3) in time slot 2, (3, 4) in time slot 1 and (2, 4) in
time slot 3. Therefore, a multiplexing degree of 3 is needed to establish the paths for the four
connections. However, as shown in Fig. 3 (b), the optimal scheduling for the four connections,
which can be obtained by considering the connection in different order, is to schedule (0, 2) in
slot 1, (1, 3) in slot 2, (3, 4) in slot 2 and (2, 4) in slot 1. This assignment only uses 2 time
slots to establish all the connections.

3.2 Coloring Algorithm

The greedy algorithm processes the requests in an arbitrary order. In this section, we will
describe an algorithm that applies a heuristic to determine the order in which to process the
connection requests. The heuristic assigns higher priorities to connection requests with fewer
conflicts. By giving the requests with less conflicts higher priorities, each configuration is likely
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Figure 3: Scheduling requests (0, 2), (1, 3),(3, 4), (2, 4).

to accommodate more requests and thus the multiplexing degree needed for the patterns is
likely to decrease.

We formulate the problem of computing the minimal configuration set as a graph coloring
problem. A coloring of a graph is an assignment of a color to each node of the graph in such a
manner that no two nodes connected by an edge are assigned the same color. The nodes in the
graph correspond to connection requests. Edges are introduced between nodes that represent
conflicting requests. This graph is referred to as a conflict graph. It can be easily shown that
the number of colors used to color the graph is equal to the number of configurations needed
to handle the connection requests. In order to minimize the multiplexing degree, our coloring
algorithm attempts to minimize the number of colors used in coloring the graph.

Construct conflict graph G = (V, E)
Calculate the priority for each node
MC=¢,k=1
NCSET =V
repeat
Sort NCSET by priority
WORK = NCSET
Cr=¢
while (WORK # ¢)
) Let ny be the highest priority node in WORK
) Cr = Cx | U{(s5.ds)}
) NCSET = NCSET —{ns}
) for each n; € NCSET and (f,1) € E do
) update the priority of n;
) WORK = WORK - {n;}
)
)
)
)
)

S
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end for
end while
MC = MC U{Ck}
k=k+1
until NCSET = ¢
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Figure 4: The graph coloring heuristic.

Since the coloring problem is known to be NP-complete, we use a heuristic for graph coloring.
The heuristic determines the order in which to color the nodes by assigning and updating
priorities to nodes. To enforce the less conflict connection first heuristic, we assign the priority
for a connection request to be the ratio of the number of links in the connection to the degree
of the corresponding node in the uncolored conflict subgraph. The algorithm is summarized
in Fig 4. It should be noted that after a node is colored, our algorithm updates the priorities
of uncolored nodes. This is because in computing the degree of an uncolored node, we only



consider the edges that connect the node to other uncolored nodes. The algorithm finds a
solution in linear time with respect to the size of the conflict graph. The time complexity of
the algorithm is O(|R|? x mawz;(|C;]) x K ), where |R| is the number of the requests, |C;| is the
number of requests in configuration C;, and K is the total number of configurations generated.

3.3 Ordered AAPC Algorithm

The graph coloring algorithm has better performance than the greedy heuristic. However, for
dense communication patterns the heuristics cannot guarantee that the multiplexing degree
found would be bounded by the minimum multiplexing degree needed to realize the all-to-all
communication pattern. The algorithm described in this section targets dense communication
patterns. By grouping the connection requests in a more organized manner, better performance
can be achieved for such patterns.

Dense communication patterns may at most require all-to-all personalized communication
(AAPC) where each node sends a message to every other node in the system. Any communi-
cation pattern can be embedded in AAPC. Many algorithms have been designed to perform
AAPC efficiently for different topologies [8]. Among these algorithms, the ones that are of in-
terest to us are the phased AAPC algorithms in which the AAPC connections are partitioned
into contention—{ree phases. Since all the connections in each AAPC phase are contention—{ree,
they form a configuration referred to as an AAPC configuration. A set of AAPC configura-
tions for the AAPC communication pattern is called the A A PC configuration set. Some phased
AAPC algorithms are optimal in that every link is used in each phase and every connection
follows the shortest path.

If the connection requests are reordered according to an AAPC configuration set such that
requests belonging to the same AAPC configuration are adjacent to each other, the use of
the greedy scheduling algorithm to schedule the reordered requests will result in at most the
number of AAPC configurations involved. For example, following the algorithms in [8] at most
N3/8 phases are needed for AAPC communication in a N x N torus. Therefore in a N x N
torus, N2/8 degree is enough to satisfy any communication pattern. Note that using greedy
or coloring algorithms usually results in larger multiplexing degree for dense communication
patterns.

To obtain better performance on dense communication patterns, it is better to keep the
connections in their AAPC format as much as possible. It is therefore better to schedule the
phases with higher link utilization first. This heuristic is used in the ordered AAPC algorithm
depicted in Figure 5. In ordered AAPC algorithm, the rank of the AAPC phases is calculated so
that a phase with higher utilization has a higher rank. The phases are then scheduled according
to their ranks. The time complexity of this algorithm is O(|R|(lg(|R|)+maz;(|C;i|)x K)), where
|R| is the number of the requests, |C;| is the number of requests in configuration C;, and K is
the number of configurations needed.

3.4 Performance of the Scheduling Algorithms

In this section, we study the performance of the connection scheduling algorithms on the 8 x 8
torus topology. The metric used to compare the algorithms is the multiplexing degree needed
to establish the connections. The performance of the algorithms is evaluated using randomly



(1) PhaseRank[*] = 0

(2) for(s;,d;) € R do

(3) let (Sz‘, dz‘) c Ayx

(4) PhaseRank[k] = PhaseRank[k] + length((s:, d;))
(3) end for

(6) sort phase according to PhaseRank

(7) Reorder R according the sorted phases.

(8) call greedy algorithm

Figure 5: Ordered AAPC scheduling algorithm.

generated communication patterns, random data redistribution patterns, and some frequently
used communication patterns. Next we describe how these patterns were obtained.

Random patterns: A random pattern consists of a certain number of random connection
requests. A connection request is obtained by randomly generating the source and the
destination. Uniform probability distribution is used to generate the sources and desti-
nations.

Random data redistribution patterns: Many languages, such as CRAFT FORTRAN,
allow an array to be redistributed within the program. Data redistributions usually result
in interprocessor communication. In this study, we consider data redistributions of a 3-
dimensional array of size 64 X 64 X 64. The array is distributed using the block—cyclic
distribution along each dimension. We denote a block—cyclic distribution as p:block(s),
where p is the number of processors in the distribution and s is the block size. The
random data redistribution patterns are obtained by randomly generating the source
and destination data distributions with regard to the number of processors allocated to
each dimension and the block size of each dimension. Precautions are taken to ensure
that the total number of processors is exactly 64 and the block size is chosen such that
each processor contains a part of the array.

Frequently used patterns: The frequently used patterns include ring, nearest neighbor,
hypercube, shuffle-exchange, and all-to—all patterns. These patterns are frequently used
in real application programs since many algorithms have been designed using these pat-
terns. A good connection scheduling algorithm should be able to handle these patterns
effectively.

Table 1 shows the performance of algorithms for random communication patterns. The first
column gives the number of connections in the random patterns. Columns 2, 3, and 4 give
the multiplexing degrees obtained by using greedy, coloring, and ordered AAPC algorithms
respectively. The multiplexing degrees shown are the average of 100 random patterns with
specific number of connections. Column 5 shows the multiplexing degree obtained by a com-
bined algorithm, which runs the coloring algorithm and the ordered AAPC algorithm and uses
the better of the two results for scheduling. In compiled communication, more time can be
spent to obtain better runtime network utilization. Hence, the combined algorithm can be
used to obtain better results by the compiler. The percentage improvement achieved by the
combined algorithm over the greedy algorithm is shown in the last column. We observe that



the coloring algorithm is always better than the greedy algorithm and the AAPC algorithm is
better than the other algorithms when the communication is dense. We can see that for sparse
random patterns (100 - 2400 connections), the improvement varies from 3.8% to 7.2%. Larger
improvements are obtained for dense communication patterns. For example, the combined
algorithm improves multiplexing degree by 43.1% over the greedy algorithm for the all-to-all
comunication pattern.

No. of | Greedy | Coloring | AAPC | Combined | Improv-
Conn. Alg. Alg. Alg. Alg. ement
100 7.0 6.7 6.9 6.6 6.3%
400 16.5 16.1 16.5 15.9 3.8%
800 27.2 25.9 26.5 25.6 6.3%
1200 36.3 34.5 35.3 34.2 6.1%
1600 45.0 43.5 43.4 42.8 5.1%
2000 53.4 50.4 50.4 49.7 7.4%
2400 60.8 57.5 57.4 56.7 7.2%
2800 68.8 64.4 62.4 62.4 10.2%
3200 76.3 70.8 64 64 19.2%
3600 83.9 76.8 64 64 31.1%
4000 91.6 83.0 64 64 43.1%

Table 1: Performance for random patterns.

No. of No. of Greedy | Coloring | AAPC | Combined | Improv-
Conn. Patterns Alg. Alg. Alg. Alg. ement

0 - 100 34 1.2 1.2 1.2 1.2 0.0%
101 - 200 50 5.9 4.9 4.8 4.6 28.3%
200 - 400 54 10.6 9.7 10.0 9.5 11.6%
401 - 800 105 17.7 15.9 16.0 15.5 14.2%
801 - 1200 122 31.7 28.7 28.6 27.6 14.9%

1201 - 1600 0 0 0 0 0 0%
1601 - 2000 15 46.3 42.8 35.1 35.1 31.9%
2001 - 2400 7T 55.5 51.5 51.9 50.4 10.1%

2401 - 4031 0 0 0 0 0 0%
4032 43 92 83 64 64 43.8%

Table 2: Performance for data distribution patterns.

Table 2 shows the performance of the algorithms for random data redistribution patterns.
The table lists the results for 500 random data redistributions. The first column lists the range
of the number of connection requests in each pattern. The second column lists the number of
data redistributions whose number of connection requests fell into the range. For example, the
second column in the last row indicates that among the 500 random data redistributions, 43
of them results in 4032 connection requests. The results show that the multiplexing degree re-
quired to establish connections resulting from data redistribution is less than those required for
random communication patterns. For data redistribution patterns, the improvement obtained
by using the combined algorithm ranges from 10.1% to 31.9% for sparse communications, which
is larger than the improvement obtained for random communication patterns. The only dense
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communication pattern that resulted from data redistribution is the all-to—all pattern.

Table 3 shows the performance for some frequently used communication patterns. In the
ring and the nearest neighbor patterns, no conflicts arise in the links. However, conflicts arise
in the communication switches. The performance gain is higher for these specific patterns
when the combined algorithm is used.

Pattern No. of Conn. | Greedy | Coloring | AAPC | Comb. | Improvement
ring 128 3 2 2 2 50%
nearest neighbor 256 6 4 4 4 50%
hypercube 384 9 7 8 7 28.6%
shuffle-exchange 126 6 4 5 4 50%
all-to—all 4032 92 83 64 64 43.8%

Table 3: Performance for frequently used patterns.

4 Compiled Communication vs Dynamic control

In this section, we compare the performance of the network under compiled communication
with the performance of the network under a dynamic control mechanism is used. When using
compiled communication, the control of the network is simple. The compiler schedules the
communication using one of the algorithms described in the previous section. We use the
combined algorithm in our simulation. At runtime, the network registers are loaded before the
communication takes place, and thus all the paths for the communications are established be-
fore the processors start communicating. When using dynamically controlled communication,
a path reservation protocol must be supported. Detailed discussion about the path reservation
protocols can be found in [15, 17]. Next, we briefly describe the path reservation protocol used
in our simulation study and then present the results of experimentation.

4.1 Dynamic Path Reservation Protocol

In addition to the optical data network, we assume that there is a shadow network which is
used to exchange the control information needed to establish paths. We also assume that
the same physical topology is used for the data and the shadow networks. The traffic on the
shadow network consists of small control messages and thus is much lighter than the traffic
on the data network. For this reason, electronic packet switching communication may be used
for the shadow network. Alternatively, a virtual channel on the data network can be reserved
exclusively for exchanging control messages.

The distributed reservation protocol can be descirbed as follows. When a processor generates
a new request, it sends a reservation packet to the destination. The reservation packet goes
through the network, reserving the available virtual channels along the path and carrying the
information about the available virtual channels towards the destination. The reservation fails
when there is no available virtual channel in some link along the path. When the reservation
packet reaches the destination, the destination will select from the set of available virtual
channels a channel to be used for the connection and send an acknowledge packet with this
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information to the source node. The acknowledgement packet follows the same path as the
reservation packet in the reverse direction. Along the path, the acknowledgement packet
releases the reserved virtual channels that are not selected and sets the switch according to
the selected channel. When the acknowledgement packet reaches the source, the path for the
communication request is established and the source node can start sending data. After the
source node finishes sending, it releases the virtual channels by sending a release message to
the destination.

4.2 Performance Evaluation

A cycle level network simulator for time-multiplexed 2-dimensional torus was developed to
study the performance of compiled communication and dynamically controlled communication.
The system parameters used in the performance evaluation are:

o Topology: 8 x 8 torus.

e Routing algorithm: XY routing is used and along each dimension messages follow the Odd-
Fven shortest—path routing, that is, a path from a node 7 to a node j follows the shortest path
if the distance between i and j is not equal to n/2. If the distance is equal to n/2, then the
path is established clockwise if 7 is odd and counter—clockwise if 7 is even.

o Multiplexing degree: For compiled communication, we assume that each link has enough
virtual channels so that the set of arbitrary connections can be established simultaneously.
For dynamically controlled communication, a fixed multiplexing degree must be used. The
multiplexing degrees considered are 1, 2, 5 and 10.

o Control packetl transmission time: 1 time slot.

e Control packetl processing time: 1 time slot.

e Control packel retransmit time: a random number range from 1 to 29 time slots.

o Processor mapping: We assume that the physical identifiers of the nodes follow the row-
major numbering and the mapping function between logical processor numbers and physical
identifiers is the identity function.

Three application programs, namely G5, TSCF and P3M, were used in this study. The
GS benchmark uses Gauss—5Siedel iterations to solve Laplace equation on a discretized unit
square with Dirichlet boundary conditions. The T'SCF program simulates the evolution of a
self-gravitating system using a self consistent field approach. P3M performs particle-particle
particle-mesh simulation. Table 4 describes the static communication patterns that arise in
these programs. While GS and TSCF programs contain only one communication pattern each,
P3M, which is a much larger program, contains five static communication patterns. All of the
above patterns are in the main iterations of the programs.

Table 5 shows the communication time for these communication patterns. Listed in the
tables are the size of the problem and the communication times (the unit of time used is a
time slot) for compiled communication and dynamic communication. As mentioned earlier, we
assume sufficient multiplexing degree to support all the patterns in compiled communication.
Thus, no network reconfiguration is required to establish each pattern. For dynamic communi-
cation, we evaluated the performance of fixed multiplexing degree of 1, 2, 5 and 10. The size of
the problem affects the message size except for the TSCF program. The following observations
can be made from the results in Table 5. First, the compiled communication out—performs dy-
namic communication in all cases. The communication time taken using dynamic protocol was
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Pattern | Type Description

GS shared array ref. PEs are logically linear array, Each PE
communicates with two PEs adjacent to it.

TSCF explicit send/recv | hypercube pattern

P3M 1 | data redistrib. (:block, :block, :block) — (:, :, :block)
P3M 2 | data redistrib. (:, :, :block) — (:block, :block, :)
P3M 3 | data redistrib. (:block, :block, :) — (:, :, :block)
P3M 4 | data redistrib. (:, 5, :block) — (:block, :block, :block)

P3M 5 shared array ref. PEs are logically 3-D array, each PE
communicates with 26 PEs surrounding it

Table 4: Communication pattern description.

2 to 20 times greater than the communication time associated with compiled communication.
Larger performance gains are observed for communication with small message sizes (e.g., the
TSCF pattern) and dense communication (e.g., the P3M 2 pattern). Second, the multiplexing
does not always improve the communication performance for dynamic communication. For
example, a multiplexing degree of 1 results in best performance for the pattern in GS. This is
because the dynamic control must use a fixed multiplexing degree and is not able to adapt to
the optimal multiplexing degree for a given communication pattern.

Pattern Problem Compiled Dynamic Comm.
Size Comm. 1 2 5 10
GS 64 x 64 35 105 118 171 251
128 x 128 67 137 154 251 411
256 x 256 131 265 304 411 731
TSCF 5120 19 344 268 270 300
P3M 1 32 x 32 x 32 831 3905 3625 2018 | 1861
64 x 64 x 64 6207 | 12471 | 10754 | 10333 | 9619
P3M 2,3 | 32 x32x 32 382 9999 6094 4661 | 4510
64 x 64 x 64 2174 | 17583 | 14223 | 10360 | 9320
P3M 4 32 x 32 x 32 457 3309 2356 1766 | 1722
64 x 64 x 64 3369 9161 7674 7805 | 7122
P3M 5 32 x 32 x 32 40 583 374 371 480
64 x 64 x 64 68 673 457 445 505

Table 5: Communication time for static patterns.

In this study we observe that for a well designed parallel program, the fine grain communi-
cations that result from shared arrays usually cause sparse communication with small message
sizes. For a communication system to efficiently support such communication, the system
should have small latency. Optical networks that use dynamic control have a large startup
overhead. Thus they cannot support this type of communication efficiently. As shown in our
simulation results, with compiled communication the startup overhead is eliminated and fine
grain communication is performed efliciently. We also observe that the data redistribution usu-
ally results in dense communication with large message sizes. In this case, the control overhead
does not significantly affect communication efficiency. However, dense communication results
in large number of conflicts in the system, and the dynamic control system may not be able
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to resolve these conflicts efficiently. Our simulation confirms the conclusion in [8] that static
management of the dense communication patterns results in large performance gains.

In summary, compiled communication achieves high performance for all types of static pat-
terns. Four factors contribute to the performance gain. First, compiled communication elimi-
nates dynamic control overhead. This is most significant for communication with small message
sizes, where the overhead in dynamic communication is large compared to the communication
time. Second, compiled communication takes the whole communication pattern into consid-
eration, while dynamic communication, which considers the connection requests one by one,
suffers from the head—of-line effect [16]. Third, the off-line message scheduling algorithm fur-
ther optimizes the communication efficiency for compiled communication. Fourth, compiled
communication allows the system to use various multiplexing degrees for different communi-
cation patterns. In dynamic communication, control mechanism with variable multiplexing
degree is very diflicult to implement and results in large overhead. Each communication pat-
tern has an optimal multiplexing degree. If the system provides a multiplexing degree smaller
than the optimal value, many messages will be blocked and the communication will not be
efficient. If the system provides a multiplexing degree larger than the optimal value, bandwidth
will be lost due to the unused time slots.

5 Conclusion

Connection oriented communication is needed in all-optical networks to avoid the inefficiency
of converting between optical and electronic signals at intermediate nodes. However, the over-
head of dynamically controlling connection oriented communication may be relatively large,
especially for communication patterns that involve short messages. Compiled communication
techniques may be used efficiently to reduce communication overhead for static patterns, which
account for a large portion of the communication in large parallel scientific applications.

In this paper, we studied the performance of compiled communication for static patterns
in time-multiplexed optical networks. Efficient algorithms for connection scheduling were pro-
posed and evaluated. We conclude that compiled communication is an efficient communication
model for all-optical networks in multiprocessor environments. We are currently investigating
techniques to use statically determined multiplexed sequences for communication patterns that
cannot be determined at compile time.
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