
STAR-MPI: Self Tuned Adaptive Routines for
MPI Collective Operations

Ahmad Faraj Xin Yuan

Department of Computer Science
Florida State University
Tallahassee, FL 32306

{faraj, xyuan}@cs.fsu.edu

David Lowenthal

Department of Computer Science
University of Georgia

Athens, GA 30602
dkl@cs.uga.edu

ABSTRACT
Message Passing Interface (MPI) collective communication rou-
tines are widely used in parallel applications. In order for a collec-
tive communication routine to achieve high performance for differ-
ent applications on different platforms, it must be adaptable to both
the system architecture and the application workload. Current MPI
implementations do not support such software adaptability and are
not able to achieve high performance on many platforms. In this
paper, we present STAR-MPI (Self Tuned Adaptive Routines for
MPI collective operations), a set of MPI collective communica-
tion routines that are capable of adapting to system architecture and
application workload. For each operation, STAR-MPI maintains a
set of communication algorithms that can potentially be efficient
at different situations. As an application executes, a STAR-MPI
routine applies the Automatic Empirical Optimization of Software
(AEOS) technique at run time to dynamically select the best per-
forming algorithm for the application on the platform. We describe
the techniques used in STAR-MPI, analyze STAR-MPI overheads,
and evaluate the performance of STAR-MPI with applications and
benchmarks. The results of our study indicate that STAR-MPI is
robust and efficient. It is able to find efficient algorithms with rea-
sonable overheads, and it out-performs traditional MPI implemen-
tations to a large degree in many cases.

1. INTRODUCTION
The standardization of Message Passing Interface (MPI) [14] has
facilitated the development of scientific parallel applications using
explicit message passing as the programming paradigm and has
resulted in a large number of MPI based parallel applications. For
these applications to achieve high performance, it is crucial that an
MPI library realizes the communications efficiently.

Studies have indicated that MPI collective operations are used
in most MPI applications and account for a significant portion of
the total time in some applications [21]. Developing efficient MPI
collective communication routines, however, is challenging. For
collective communication routines to achieve high performance for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICS’06, June 28–30, Cairns, Queensland, Australia.
Copyright c© 2006 ACM 1-59593-282-8/06/0006. . . $5.00.

different applications on different platforms, they must be able to
adapt to the system/application configuration: the most efficient
algorithm for a given configuration may be vastly different from
that for a different configuration. The challenges in developing
efficient MPI collective communication routines lie not so much
in the development of an individual algorithm for a given situation.
In fact, many efficient algorithms for various operations have been
developed for different networks and different topologies. The main
challenge lies in the mechanism for a library routine to adapt to
system/application configurations and to find the most efficient
algorithm for a given configuration.

The current paradigm for implementing MPI libraries is that for
a given operation, the library developer must decide at library de-
sign time which algorithm is to be used in a given situation (such as
a given message size, a given type of network, etc). MPI libraries
developed using this paradigm such as MPICH [15] and LAM/MPI
[9] can only support a limited form of software adaptability and
cannot achieve high performance on many platforms for the follow-
ing reasons [3]. First, since the algorithms are decided before the
system is known, the algorithms cannot be optimized for the sys-
tem parameters. Many system parameters, including network topol-
ogy, nodal architecture, context switching overheads, ratio between
the network and the processor speeds, the switch design, and the
amount of buffer memory in switches, can significantly affect the
performance of a communication algorithm. It is impossible for the
library developer to make the right choices for different platforms.
Second, the application behavior, which can also significantly af-
fect the performance, cannot be taken into consideration in the de-
velopment of the library.

We propose a technique, which we call delayed finalization of
MPI collective communication routines (DF), to improve the soft-
ware adaptability in MPI libraries. The idea is to postpone the de-
cision of which algorithm to use for a collective operation until
after the platform and/or the application are known. This poten-
tially allows architecture and/or application specific optimizations
to be applied. A DF system has two major components: (1) an al-
gorithm repository that contains, for each operation, an extensive
set of topology/system unaware and topology/system specific algo-
rithms that can potentially achieve high performance in different
situations, and (2) an automatic algorithm selection mechanism to
determine the algorithms to be used in the final routine. The DF
library developers only implement the communication algorithms
and the mechanisms to select the algorithms, but do not make de-
cisions about which algorithms to use in an operation. The final
algorithms for an operation are automatically selected by the al-
gorithm selection mechanism, which may take system architecture
and application into account.



In this paper, we present a prototype DF system named STAR-
MPI (Self Tuned Adaptive Routines for MPI collective opera-
tions). STAR-MPI maintains a set of algorithms for each opera-
tion and applies the Automatic Empirical Optimization of Software
(AEOS) technique [27] at run time to dynamically select (tune)
the algorithms as the application executes. STAR-MPI targets pro-
grams that invoke a collective routine a large number of times (pro-
grams that run for a large number of iterations). One major issue in
STAR-MPI is whether the AEOS technique can effectively select
good algorithms at run time. Hence, our primary objective is to de-
velop AEOS techniques that can find the efficient algorithms at run
time. Under the condition that efficient algorithms can be found, the
secondary objective is to reduce the tuning overhead. STAR-MPI
incorporates various techniques for reducing the tuning overhead
while selecting an efficient algorithm. We describe the techniques
used in STAR-MPI, study the tuning overheads, and evaluate the
performance of STAR-MPI using benchmarks and application pro-
grams. The results of our study show that (1) STAR-MPI is robust
and effective in finding efficient MPI collective routines; (2) the
tuning overheads are manageable when the message size is rea-
sonably large; and (3) STAR-MPI finds the efficient algorithms for
the particular platform and application, which not only out-perform
traditional MPI implementations to a large degree in many cases,
but also offers better performance in many cases than a static tuning
system [3] with a super-set of algorithms.

The rest of the paper is organized as follows. Section 2 discusses
the related work. Section 3 describes the STAR-MPI library. Sec-
tion 4 reports the results of the performance study, and Section 5
concludes the paper.

2. RELATED WORK
The success of the MPI standard can be attributed to the wide
availability of two MPI implementations: MPICH[15, 25] and
LAM/MPI [9]. Many researchers have worked on optimizing the
MPI library [10, 11, 12, 16, 23, 24, 25]. In [12], optimizations are
proposed for collective communications over Wide-Area Networks
by considering the network details. In [16], a compiler based opti-
mization approach is developed to reduce the software overheads
in the library. In [10], MPI point–to–point communication routines
are optimized using a more efficient primitive (Fast Message). Op-
timizations for a thread-based MPI implementation are proposed
in [24]. Optimizations for clusters of SMPs are presented in [23].
A combined compiler and library approach was proposed in [11].
There is a large body of work on the development of algorithms for
MPI collective operations [4, 5, 18, 25]. This work, however, does
not focus on developing collective communication algorithms. It is
concerned about how to achieve software adaptability by selecting
the best algorithm among a set of communication algorithms.

The AEOS technique has been applied successfully to various
computational library routines [1, 6, 27]. Using the empirical ap-
proach to tune MPI collective algorithms was proposed in [26] and
later extended in [3]. The systems in [26, 3] tune the routines stati-
cally at the library installation time. While these systems delay the
finalization of MPI routines until the platform is known, they have
limitations. First, the algorithm selection process, also called tuning
process, lasts for a long time since each algorithm must be executed
and measured for many message sizes. This limits the applicability
of the system: it is beneficial only when the platform is fixed and
the routines are repeatedly invoked. Second, since the routines are
tuned using some standard performance measurement scheme (e.g.
Mpptest [7]), the tuned routines may not select the most efficient
algorithm for a given application.

While both STAR-MPI and our previous static tuning system [3]
employ the AEOS approach to select the best performing algorithm
from a repository of communication algorithms, apart from using a

similar set of communication algorithms, STAR-MPI is fundamen-
tally different from static tuning. First, the major research issue in
STAR-MPI is (1) whether it is possible to find good algorithms
dynamically at run time and (2) how to find the algorithms with
minimum tuning. This is not a problem in the static tuning system.
Second, the techniques in STAR-MPI can be directly applied to the
implementation of a traditional MPI library while the static tuning
system produces a different type of library (users must go through
the static tuning to obtain the final routine). Third, STAR-MPI is
different from the static tuning system in terms of applicability.
STAR-MPI is effective on a typical supercomputing cluster where
users get different partitions, and therefore potentially different net-
work characteristics, every time they run a job. Static tuning in such
an environment can be prohibitively expensive. Finally, STAR-MPI
measures the performance of each algorithm in the context of ap-
plication execution, which results in a more accurate measurement.
Our performance study indicates that STAR-MPI often selects bet-
ter algorithms than our previous static tuning system [3], which
in turn usually selects more efficient algorithms than the ones in
traditional MPI implementations. We are not aware of any MPI im-
plementations similar to STAR-MPI.

3. STAR-MPI

all−to−all

MPI Application

STAR_Alltoall(buf, ....);
.....

..........
/* same prototype as
    MPI_Alltoall(...) */

STAR−MPI

STAR_Alltoall STAR_Allgather

mechanisms
(AEOS)

empirical
dynamic dynamic

empirical
mechanisms
(AEOS)

algorithms
all−gather

algorithms

Figure 1. High level view of STAR-MPI.

The high level view of the STAR-MPI library is shown in Fig-
ure 1. STAR-MPI is an independent layer or library that contains
a set of collective communication routines whose prototypes are
the same as the corresponding MPI collective communication rou-
tines. MPI programs can be linked with STAR-MPI to accesses the
adaptive routines. As shown in the figure, an MPI Alltoall in an ap-
plication is replaced with STAR Alltoall routine. Different from tra-
ditional MPI implementations, each STAR-MPI routine has access
to an algorithm repository that contains multiple implementations
for the operation. In addition, each STAR-MPI routine incorporates
a dynamic Automatic Empirical Optimization of Software (AEOS)
[27] module, which performs self-monitoring and self-tuning dur-
ing program execution. By maintaining multiple algorithms that
can achieve high performance in different situations for each op-
eration and using a dynamic empirical approach to select the most
efficient algorithm, STAR-MPI is able to adapt to the application
and platform.

STAR-MPI runs over MPICH. The routines supported in STAR-
MPI include MPI Alltoall, MPI Allgather, MPI Allgatherv, MPI
Allreduce, and MPI Bcast. STAR-MPI is designed for Ethernet
switched clusters. All algorithms in STAR-MPI come from the al-
gorithm repository of our static tuning system [3], which was de-
signed for Ethernet switched clusters. Hence, STAR-MPI achieves
the best results on Ethernet switched clusters, although it can also
tune routines for other types of clusters. In the following, we will
first summarize briefly the algorithms maintained in STAR-MPI
and then describe the dynamic AEOS technique.



3.1 COLLECTIVE ALGORITHMS IN STAR-MPI

As shown in Figure 1, each collective routine in STAR-MPI in-
cludes an algorithm repository that contains a set of communication
algorithms that can potentially achieve high performance in differ-
ent situations. The organization of the algorithm repository is simi-
lar to that in [3]. It includes both topology unaware algorithms and
topology specific algorithms. The topology specific algorithms are
automatically generated based on the topology information when it
is available. In cases when the topology information is not avail-
able, only the topology unaware algorithms are used in the tuning.
Meta-data are associated with each algorithm to describe important
properties of the algorithms. One example of the meta-data is the
range of the message sizes where the algorithm can be efficiently
applied. The AEOS algorithm in STAR-MPI may use the meta-data
information to decide the communication algorithms that would be
included in a particular tuning process.

Selecting algorithms to be included in STAR-MPI is very im-
portant for the performance since (1) the number of algorithms in
the repository directly affects the time to tune the routine, and (2)
the performance of each of the algorithms selected directly affects
the program execution time since it must be executed even if it is
not used in the final routine. Hence, the criteria for including an
algorithm in STAR-MPI are more strict than those for including an
algorithm in the static tuning system: the set of algorithms used in
STAR-MPI is a subset of the algorithms in our static tuning sys-
tem [3]. The selection represents a trade-off between overhead and
effectiveness. Including more algorithms makes STAR-MPI more
effective and robust, but will introduce more overhead in the tuning
process. Our selection is based on our experience with the static
tuning system. First, we remove algorithms that are rarely selected
by the static tuning system. Second, some algorithms in the static
tuning system have a large parameter space. It takes a long tuning
time to obtain the algorithm with the best parameter values. STAR-
MPI replaces such an algorithm (with a large parameter space) by
a small number of most promising algorithm instances. Next, we
will briefly describe the STAR-MPI algorithms for MPI Alltoall,
MPI Allgather, and MPI Allreduce. These routines are used in the
evaluation. MPI Allgatherv has exactly the same sets of algorithms
as MPI Allgather.

Algorithms for MPI Alltoall

There are 13 all-to-all algorithms in STAR-MPI. Four of the algo-
rithms are only for small messages (message size less than or equal
to 256 bytes). The description of the algorithms follows. In the de-
scription, i→ j denotes the communication from node i to node j
and p is the number of processes.
Simple. This algorithm basically posts all receives and all sends,
starts the communications, and waits for all communications to
finish. The order of communications for node i is i → i + 1,
i→ i + 2, ..., i→ (i + p− 1) mod p.
2D mesh. This algorithm organizes the nodes as a logical x × y
mesh and tries to find the factoring such that x and y are close to√

p. The all–to–all operation is carried out first in the x dimension
and then in the y dimension. For all data to reach all nodes, the all–
to–all operation is actually an all-gather operation that collects all
data from each node to all nodes in each dimension.
3D mesh. This algorithm extends the 2D mesh algorithm to a 3D
mesh algorithm by organizing the nodes as a logical x×y×z mesh.
Recursive doubling (rdb). When the number of processes is a power
of two, the recursive doubling algorithm is the extension of the 2D
mesh and 3D mesh algorithms to the extreme: a lg(p)-dimensional
mesh with 2 nodes in each dimension. This algorithm first performs
an all-gather operation to collect all data from all nodes to each
node. Each node then copies the right portion of the data to its

receiving buffer. Details about recursive doubling can be found in
[25].
Bruck. This is another lg(p)-step algorithm that sends less extra
data in comparison to the recursive doubling algorithm. Details can
be found in [2, 25].

The 2D mesh, 3D mesh, rdb, and Bruck algorithms are designed
for small messages. STAR-MPI only uses them to tune for mes-
sages up to 256 bytes.
Ring. This algorithm partitions the all-to-all communication into
p − 1 steps (phases). In step i, node j sends a messages to node
(j + i) mod p and receives a message from node (j − i) mod p.
Thus, this algorithm does not incur node contention if all phases are
executed in a lock-step fashion. Since different nodes may finish a
phase and start a new phase at different times, the ring algorithm
only reduces the node contention (not eliminates it).
Ring with light barrier. This algorithm adds light-weight barriers
between the communications in different phases that can poten-
tially cause node contention and eliminates such contention.
Ring with MPI barrier. The previous algorithm allows phases to
proceed in an asynchronous manner which may cause excessive
data injected into the network. The ring with MPI barrier algorithm
adds an MPI barrier between two phases and makes the phases
execute in a lock-step fashion.
Pair. The algorithm only works when the number of processes is a
power of two. This algorithm partitions the all-to-all communica-
tion into p−1 steps. In step i, node j sends and receives a message
to and from node j ⊕ i (exclusive or). In the pair algorithm, each
node interacts with one other node in each phase compared to two
in the ring algorithm. The reduction of the coordination among the
nodes may improve the overall communication efficiency. Similar
to the ring family algorithms, we have pair with light barrier, and
pair with MPI barrier algorithms.
Topology specific. We use a message scheduling algorithm that we
developed in [4]. This algorithm finds the optimal message schedul-
ing by partitioning the all–to–all communication into phases such
that (1) communications within each phase do not have contention,
and (2) a minimum number of phases are used to complete the com-
munication. STAR-MPI has two variations of the topology specific
algorithm with different synchronization mechanisms.

Algorithms for MPI Allgather

STAR-MPI maintains 12 algorithms for MPI Allgather. The all-
gather communication pattern is a special all–to–all communica-
tion pattern (sending the same copy of data to each node instead
of sending different messages to different nodes). The STAR-MPI
algorithm repository for MPI Allgather includes the following al-
gorithms that work similar to their all-to-all counterparts: simple,
2D mesh, 3D mesh, rdb, ring, ring with light barrier, ring with MPI
barrier, pair, pair with light barrier, pair with MPI barrier. STAR-
MPI also includes the Bruck all-gather algorithm [2], which is dif-
ferent from the Bruck all-to-all algorithm. Details can be found in
[2, 25]. In addition, the STAR-MPI repository includes a topology-
specific logical ring (TSLR) algorithm [5]. Let n′

0, n′
1, ..., n′

p−1 be
a permutation of the p processors. TSLR finds a permutation such
that the communications in n′

0 → n′
1 → ...→ n′

p−1 → n′
0 do not

cause network contention. TSLR realizes the all-gather operation
by performing the n′

0 → n′
1 → ... → n′

p−1 → n′
0 pattern p − 1

times.

Algorithms for MPI Allreduce

STAR-MPI maintains 20 algorithms for MPI Allreduce.
These algorithms can be classified into three types.

In the first type of algorithms, the MPI Allreduce operation is
performed by first using an MPI Allgather to gather the data in all
nodes and then performing the reduction operation. The all-gather



has the following variations: Bruck, 2D mesh, 3D mesh, rdb, and
ring.

The second-type algorithms are variations of the Rabenseifner
algorithm [20], where the all-reduce operation is performed by a
reduce-scatter operation followed by an all-gather operation. The
reduce-scatter is realized by recursive halving [20] and the all-
gather implementation has the following variations: simple, 2D
mesh, 3D mesh, rdb, Bruck, ring, ring with light barrier, ring with
MPI barrier, and TSLR. We will use Rab1-x to denote this type of
algorithms with x all-gather implementations. For example, Rab1-
2D means the variation with the 2D mesh all-gather algorithm.

The third-type algorithms are also variations of the Raben-
seifner algorithm [20], where the all-reduce operation is performed
by a reduce-scatter operation followed by an all-gather operation.
In this case, the reduce-scatter operation is realized by an all-to-
all operation. We will denote the algorithm by the pair (all-to-all,
all-gather). STAR-MPI maintains the following algorithms: (ring,
TSLR), (ring with light barrier, TSLR), (ring with MPI barrier,
TSLR), (ring, ring), (ring with light barrier, right with light bar-
rier), and (ring with MPI barrier, ring with MPI barrier). We will
use Rab2-(x, y) to denote this type of algorithms with the (x, y) al-
gorithms. For example, Rab2-(ring, ring) denotes the (ring, ring)
variation of this type of algorithms.

3.2 DYNAMIC AEOS ALGORITHM IN STAR-MPI

Given a set of algorithms, the primary objective of the dynamic
AEOS algorithm is to find the most efficient algorithm (among the
set of algorithms) for an application running on a given platform.
The second objective is to minimize the overheads. Next, we will
describe the AEOS algorithm and show how it achieves these two
objectives.

Different MPI call sites or even the same call site invoked with
different message sizes constitute different program contexts. MPI
routines used in different program contexts usually have different
program behavior. To achieve the maximum tuning effectiveness,
routines in different contexts must be tuned independently. STAR-
MPI addresses this issue as follows. For each MPI collective rou-
tine, STAR-MPI supports N independent but identical routines,
where N is a parameter. Different call sites of the same MPI rou-
tine in an MPI program can be tuned independently. To deal with
the case of invoking the same call site with different message sizes,
STAR-MPI allows each call site to tune for a pre-defined number,
X , of message sizes. If a call site has more than X different mes-
sage sizes during the program execution, STAR-MPI tunes for the
first X sizes and uses the default MPI routine for the rest of sizes.
Note that in practice, a call site in an MPI program usually results
in only a small number of message sizes, most call sites only have
one message size. This arrangement allows the dynamic AEOS al-
gorithm to focus on tuning for one message size on one call site
to maximize the tuning effectiveness. In the rest of the section, we
will assume that the AEOS algorithm is applied to tune one mes-
sage size on one call site.

In the course of program execution, a STAR-MPI routine (for
one message size in each call site) goes through two stages: Mea-
sure Select and Monitor Adapt. In the Measure Select stage, in
each invocation of the routine, one of the algorithms in the repos-
itory is used to realize the operation and the performance of the
algorithm is measured. During the Measure Select stage, all algo-
rithms in the repository will be executed and measured a number
of times. The number of times that each algorithm is executed and
measured in this stage is a system parameter. At the end of the
Measure Select stage (all algorithms are executed and measured),
an all-reduce operation is performed to compute the performance
results on all processors and an algorithm is selected as the best
algorithm based on the measured performance. The performance

of all other algorithms is stored for future uses. Notice that for the
whole Measure Select stage, only one additional all-reduce com-
munication (with a reasonable small message size) is performed.
Note also that in this stage, less efficient algorithms end up be-
ing used to carry out the operation since their performance must be
measured. After the Measure Select stage, it is expected that the se-
lected algorithm will deliver high performance for the subsequent
invocations. However, this may not always occur due to various rea-
sons. For example, the initial measurement may not be sufficiently
accurate, or the workload in the application may change. To handle
such situations, in the Monitor Adapt stage, STAR-MPI continues
monitoring the performance of the selected algorithm and adapts
(changes the algorithm) when the performance of the selected al-
gorithm deteriorates.

Figure 2 shows the details of the dynamic AEOS algorithm. In
the figure, we illustrate the use of STAR Alltoall to tune MPI Alltoall.
The AEOS algorithm is the same for all operations supported in
STAR-MPI. It is important to understand that all internal states
of STAR Alltoall (or any other STAR-MPI collective operation)
are static since it must be retained between invocations. Each time
STAR Alltoall is called, the algorithm first computes (line 1) the
message size, x, for the operation. Once the message size is known,
the algorithm can be in either of the two previously described stages
depending on the value of best algorithmx. As shown in lines 3-6,
if best algorithmx points to an invalid communication algorithm
index, denoted by NIL, then the algorithm is in the Measure Select
stage and calls the Measure Select() routine. Otherwise, it is in the
Monitor Adapt stage and calls the Monitor Adapt() routine.

The logic of the Measure Select() routine (lines 7-18) is
straight-forward. It runs and measures each algorithm ITER times.
ITER is a parameter we control and is set to 10 in the current
system. This number was determined by us experimentally; it is
a trade-off between the tuning overhead and measurement ac-
curacy. When all communication algorithms are examined, the
Dist Time() routine is called (line 17) to compute the commu-
nication time for all algorithms and distribute the results to all
processors, and the Sort Alg() routine is called (line 18) to sort
the algorithms based on their performance and select the best algo-
rithm (set the value for best-algorithmx). Notice that the algorithm
is selected based on the best performance measured.

Once best algorithmx is set, the AEOS algorithm enters the
Monitor Adapt stage. In this stage, the algorithm pointed by best-
algorithmx is used to realize the operation. The AEOS task in this
stage is to monitor the performance of the selected communication
algorithm and to change (adapt) to another algorithm when the
performance of the selected algorithm deteriorates.

The Monitor Adapt() routine is shown in lines 19-38. The
logic is as follows. First, the algorithm pointed by best-algorithmx

is used to realize the operation and the performance on each pro-
cessor is measured. The monitoring is done locally (no global
communication) during the monitoring period, which is defined as
δ ∗ ITER invocations, where δ is a variable whose value is ini-
tialized to be 2. At the end of the monitoring period, an all-reduce
operation is performed to compute the performance of the selected
algorithm and distribute the performance results to all processors.
If the average communication time of the selected algorithm dur-
ing the monitoring period is less than (1 + ε) ∗ second best time,
the length of the monitoring period is doubled. Here, ε is a sys-
tem parameter, currently set to 10%. If the average communication
is more than (1 + ε) ∗ second best time, there are two cases. If
the average communication time of the last ITER invocations is
also larger than (1 + ε) ∗ second best time, this indicates that the
selected algorithm may not be as efficient as the second best al-
gorithm and, thus, the second best algorithm is now selected. The
average time of the replaced algorithm is recorded and algorithms



ITER: number of iteration to examine an algorithm
δ: monitoring factor, initialized to 2
T: threshold used to switch between algorithms
TOTAL ALGS: total number of algorithms to examine
func: pointer to a given function pointed by indexx

best algorithmx ← NIL;
STAR Alltoall(sbuf, scount, stype, ...)

MPI Type size(stype, & size)1

x← scount * size2

if (best algorithmx == NIL)3
Measure Select(sbuf, scount, stype..., x)4

else5
Monitor Adapt(sbuf, scount, stype, ..., x)6

indexx ← iterx ← 0
Measure Select(sbuf, scount, stype, ..., x)

func← Alltoall Alg(indexx)7

t0 ←MPI Wtime()8

func(sbuf, scount, ...)9

t1 ←MPI Wtime()10

le time[indexx][iterx]← t1 - t011

iterx++12

if (iterx == ITER)13
iterx ← 014

indexx++15

if (indexx == TOTAL ALGS)16
Dist Time(le time, ge time, best time)17

best-algorithmx ← Sort Alg(best time, x)18

Monitor Adapt(sbuf, scount, stype, ..., x)
func← Alltoall Alg(best algorithmx)19

t0 ←MPI Wtime()20

func(sbuf, scount, ...)21

t1 ←MPI Wtime()22

total[0]← total[0] + (t1 - t0)23

if (δ*ITER - monitorx ≤ ITER)24
total[1]← total[1] + (t1 - t0)25

monitorx++26

if (monitorx == δ * ITER)27
MPI Allreduce(total, ave, 2, .., MPI SUM, ..)28

ave[0]← total[0] / monitorx29

ave[1]← total[1] / ITER30

if (ave[0] < (1+ε) * best time[1])31
δ← δ * 232

else if (ave[0] ≥ (1+ε) * best time[1])33
if (ave[1] ≥ (1+ε) * best time[1])34

best time[best algorithmx]← ave[0]35

best-algorithmx ← Sort Alg(best time, x)36

δ← 237
monitorx ← total[0]← total[1]← 038

Dist Time(le time, ge time, best time)
MPI Allreduce(le time, ge time,..MPI SUM,..)39

foreach i in 0 .. TOTAL ALG40
foreach j in 0 .. ITER41

ge time[i][j]← ge time[i][j] / nprocs42

foreach i in 0 .. TOTAL ALG43
best time[i]←MIN(ge time[i][j])44

0≤j<ITER

.
Figure 2: Using STAR-MPI algorithm to tune MPI Alltoall

are re-sorted based on their performance. When a new algorithm is
selected, δ is reset to 2. If the average communication time of the
last ITER invocations is less than (1 + ε) ∗ second best time, the
bad performance measured may be caused by some special events
and the AEOS algorithm resets δ = 2 so that the selected algorithm
can be monitored more closely.

The monitoring is critical to ensure that STAR-MPI will even-
tually find an efficient algorithm. A number of trade-offs between
overheads and effectiveness are made in the Monitor Adapt routine.
First, the length of the monitoring period, which is controlled by
δ, doubles every time the selected algorithm continues to perform
well. This reduces the monitoring overhead: if the selected algo-
rithm continues to perform well, the total number of all-reduce
operations in the Monitor Adapt stage is a logarithm function of
the total number of invocations. However, this creates a chance for
STAR-MPI to adapt too slowly due to large monitoring periods. In
practice, an upper bound can be set for δ to alleviate this problem.
Second, a simple heuristic is used to decide whether the selected
algorithm is still performing well. A more complex statistical ap-
proach may improve the monitoring accuracy by better filtering out
noises in the measurement or program execution. Such an approach
will incur more computation and more communication in the Mon-
itor Adapt stage. We adopt the simple approach since it works quite
well in our experiments.

3.3 Enhancing Measure Select by algorithm grouping

As we can see from the previous discussion, most of the tuning
overheads occur in the Measure Select stage. When the message
size is reasonably large, the bookkeeping overheads in STAR-MPI
is relatively small. However, the penalty for using less efficient
algorithms to realize an operation can potentially be very high.
Two parameters determine such penalty: the parameter ITER and
the number of less efficient algorithms in the repository. Hence,
ideally, one would like to reduce the number of algorithms as much
as possible. However, the problem is that reducing the number of
algorithms may make the system less robust and that before the
algorithm is executed and measured, it is difficult to decide which
algorithm is more efficient than other algorithms.

Algorithm grouping is one way to reduce the number of algo-
rithms to be probed without sacrificing the tuning effectiveness. Al-
gorithm grouping is based on the observation that a collective com-
munication algorithm usually optimizes for one or multiple sys-
tem parameters. When a system parameter has a strong impact on
the performance of a collective operation, the algorithms that op-
timize this parameter tend to out-perform other algorithms that do
not consider this parameter. Based on this observation, algorithm
grouping groups algorithms based on their optimization objectives.
For example, the 2D mesh, 3D mesh, rdb, and Bruck algorithms for
MPI Alltoall all try to reduce the startup overheads in the operation
by reducing the number of messages. If the startup overheads in
an operation is important, any of these algorithms will out-perform
other algorithms that do not reduce the number of messages. Hence,
these four algorithms can be joined into one group. Once all algo-
rithms are classified into groups, the Measure Select() routine can
first identify the best performing groups by comparing algorithms
in different groups (one algorithm from each group) and then de-
termine the best performing algorithm by evaluating all algorithms
in that group. This two-level tuning scheme reduces the number
of algorithms to be measured in the Measure Select phase while
maintaining the tuning effectiveness (theoretically, all algorithms
are still being considered). Notice that algorithm grouping also af-
fects the Monitor Adapt stage: in Monitor Adapt stage, when a new
algorithm in a new group is selected, if the algorithms in the new
group have not been probed, the system must first examine all algo-
rithms in the group before selecting the best performing algorithm.



We will call the AEOS algorithm without grouping the basic AEOS
algorithm and with grouping the enhanced AEOS algorithm.

The effectiveness of algorithm grouping depends on how the
algorithms are grouped. In our system, we group the algorithms
based on the performance model in [3]. Algorithms that optimize
the same set of parameters are classified in one group. Specifically,
the 13 all-to-all algorithms are partitioned into 6 groups: group 1
contains simple; group 2 (used only for small messages (≤ 256B))
contains rdb, 2D mesh, 3D mesh, and Bruck; group 3 contains ring
and pair; group 4 contains ring with light barrier and pair with light
barrier; group 5 contains ring with MPI barrier and pair with MPI
barrier; group 6 contains the two topology specific algorithms.
The 12 algorithms for MPI Allgather are partitioned into 6 groups:
group 1 contains simple; group 2 contains rdb, 2D mesh, 3D mesh,
and Bruck; group 3 contains ring and pair; group 4 contains ring
with light barrier and pair with light barrier; group 5 contains ring
with MPI barrier and pair with MPI barrier; group 6 contains the
topology specific logical ring (TSLR) algorithm. The 20 all-reduce
algorithms are partitioned into 3 groups based on the three types of
algorithms. Notice that although this grouping scheme may not be
optimal, it allows us to evaluate the algorithm grouping technique
for improving dynamic AEOS scheme.

In general, grouping trades tuning overheads with the quality of
the selected algorithm: the best performing algorithm may not be
selected with grouping. However, in all of our tests, the enhanced
STAR-MPI selected as good of (or virtually as good as) an algo-
rithm as did the basic AEOS algorithm while significantly reducing
the overheads.

4. PERFORMANCE STUDY
We perform most of the experiments on Ethernet-switched clusters
since STAR-MPI is equipped with algorithms that are designed
for Ethernet-switched clusters. To demonstrate the robustness of
the STAR-MPI technique, we have also tested STAR-MPI on the
Lemeiux machine at Pittsburgh Supercomputing Center (PSC)
[19]. The nodes in our Ethernet switched clusters are Dell Di-
mension 2400s with a 2.8GHz P4 processor, 128MB of memory,
and 40GHz of disk space. All machines run Linux (Fedora) with the
2.6.5-1.358 kernel. The Ethernet card in each machine is Broadcom
BCM 5705 with the driver from Broadcom. These machines are
connected to Dell Powerconnect 2224 100Mbps Ethernet switches.
The topologies used in the experiments are shown in Figure 3. Part
(a) of the figure is a 16-node cluster connected by a single switch
while part (b) shows a 32-node cluster connected by 4 switches,
with 8 nodes attached to each switch. We will refer to the topolo-
gies as topology (a) and topology (b), respectively.

n23

n0 n1 n15

S0

(a)

(b)

n0

S3

n14

n30n6

n22

n26

n3 n19

n24

n1 n9

S0

n17n25

S1 S2

n8 n16 n2 n10 n18 n4 n12 n20 n28

n11 n27 n5 n29n13 n21

n7 n31n15

Figure 3. Topologies used in the experiments.

As discussed earlier, there are two major performance issues in
STAR-MPI. First, for STAR-MPI to be efficient, the AEOS tech-
nique must be able to select good communication algorithms at
runtime. To examine the capability of STAR-MPI in selecting good

communication algorithms, we compare the performance of STAR-
MPI (STAR) with the original MPICH 2.1.0.1 and our static tun-
ing system [3] (STATIC), which also runs on MPICH and tunes
algorithms for Mpptest [7]. The algorithm repository in STAR-
MPI is a subset of the algorithm repository in STATIC. Second,
STAR-MPI introduces overheads in both the Measure Select and
Monitor Adapt stages. In the Measure Select stage, less effi-
cient communication algorithms are executed to carry out the op-
erations. We denote such overheads as Oc

MS . Additional overheads
are introduced in this stage to execute the AEOS logic (e.g. mea-
suring, computing, and recording the performance of all commu-
nication algorithms). We denote such overheads as Oa

MS . In the
Monitor Adapt stage, the overheads are introduced to monitor the
performance and to execute the logic to determine whether the cur-
rent algorithms should be changed. We denote the overheads in the
Monitor Adapt stage as OMA. In the rest of the section, we will
first compare the basic AEOS algorithm with the enhanced AEOS
algorithm that uses algorithm grouping. We will then study the ca-
pability of STAR-MPI in selecting good communication algorithms
in a number of application programs. After that, we evaluate the
overheads of STAR-MPI. Finally, we present our experiments on
the Lemieux cluster at PSC.

4.1 Basic AEOS .vs. Enhanced AEOS

For STAR-MPI to be efficient, it must (1) be able to find the effi-
cient algorithms and (2) find the algorithms as quickly as possible.
The algorithm found at the end of the Measure Select stage usu-
ally (but not always) offers reasonably good performance and is
used thereafter. Hence, a good indication of the performance of an
AEOS algorithm is the (1) the quality of the algorithm selected
at the end of Measure Select, and (2) the duration of the Mea-
sure Select stage, which measures how fast the AEOS algorithm
can find the selected algorithm. This section compares the basic
and enhanced AEOS algorithms with these two metrics.

for (i = 0; i < 500; i++) {
... // computation that lasts roughly 5 times

// the collective operation time
start = MPI Wtime();
MPI Alltoall(...);
elapsed += (MPI Wtime() - start);

}

Figure 4. An example micro-benchmark.

We use micro-benchmarks that are similar to the one shown
in Figure 4 in the comparison. This micro-benchmark simulates
programs with a perfect computation load distribution. The main
loop contains both computation and collective communication. The
time for the computation in the loop is set to be roughly 5 times the
total communication time. The elapsed time for the communication
is measured and reported.

Table 1 shows the number of invocations in the Measure Select
stage, the total communication time in this stage, and the algo-
rithms selected by the basic and enhanced AEOS algorithms. As
expected, the enhanced scheme greatly reduces the number of invo-
cations and the time in the Measure Select stage. Moreover, the al-
gorithms selected by the two schemes are mostly the same. In cases
when the selected algorithms are different (e.g. 128KB all-to-all
and 128KB all-reduce), the performance of the different communi-
cation algorithms is very similar. We have conducted experiments
with different message sizes and different topologies and obtained
similar observations. Hence, we conclude that the enhanced scheme
is more efficient than the basic scheme (at least in our system). In



Table 1. Basic AEOS vs. enhanced AEOS on topology (a).

operation msg Measure basic enhanced
size Select

all-to-all 2KB # of 90 50
invocations
time (ms) 2181 1183
algorithm simple simple

128KB # of 90 60
invocations
time (ms) 31953 19018
algorithm ring light pair light

all-gather 2KB # of 120 60
invocations
time (ms) 2055 1229
algorithm simple simple

128KB # of 120 60
invocations
time (ms) 41233 18335
algorithm TSLR TSLR

all-reduce 2KB # of 200 110
invocations
time (ms) 2413 1571
algorithm Rab1-2D Rab1-2D

128KB # of 200 110
invocations
time (ms) 25319 7895
algorithm Rab1-3D Rab1-Bruck

the rest of the section, we will only report results of STAR-MPI
with the enhanced AEOS algorithm.

4.2 Application Results

Since STAR-MPI targets programs that run for a large number of
iterations, we select the application benchmarks that (1) run for a
large number of iterations and (2) have significant collective com-
munications. To achieve high performance for this type of pro-
grams, it is critical that STAR-MPI must eventually select efficient
communication algorithms to carry out the collective operations.
The results in the this sub-section mainly reflect the capability of
STAR-MPI in selecting communication algorithms.

We use four applications in the evaluation: FFTW [8], LAMMPS
[13], NTUBE [22], and NBODY [17]. FFTW [8] is a C library of
routines for computing the discrete Fourier transform in one or
more dimensions, of arbitrary input size, and of both real and com-
plex data. When using the benchmark test driver, the value of l (lin-
ear size) is 1500 and the value of nfft (number of Fourier transforms
to execute) is 500. The LAMMPS (Large-scale Atomic/Molecular
Massively Parallel Simulator) [13] benchmark models the assem-
bly of particles in a liquid, solid, or gaseous state. In the exper-
iments, we ran the program with 1720 copper atoms for 10000
iterations. The NTUBE (Nanotube) program performs molecular
dynamics calculations of thermal properties of diamond [22]. In
the evaluation, NTUBE runs for 1000 steps and simulate 25600
atoms. Finally, NBODY [17] simulates over time steps the interac-
tion, in terms of movements, position and other attributes, among
the bodies as a result of the net gravitational forces exerted on one
another. We ran the code for 1000 steps with 8000 bodies on topol-
ogy (a) and 25600 bodies on topology (b). Note that the number
of iterations or time steps for each benchmark is chosen such that
it is sufficient enough (1) to allow STAR-MPI routines finish the
Measure Select stage and (2) to achieve considerable performance
gains that will amortize the overheads associated with the STAR-
MPI technique. For the different benchmarks, Table 2 shows the
major MPI collective routines and the message sizes for topologies

(a) and (b). These routines account for a significant portion of the
total application times and are tuned using STAR-MPI.

Table 2. Collective operations in the applications on different
topologies (T).

program operation msg size
FFTW MPI Alltoall T.(a): 141376B

T.(b): 33856B
LAMMPS MPI Allreduce T.(a): 42382B

T.(b): 42382B
NTUBE MPI Allgatherv T.(a): 256000B

T.(b): 128000B
NBODY MPI Allgather T.(a): 20000B

T.(b): 32000B

Next, Table 3 shows the different communication algorithms se-
lected in STAR, STATIC, and MPICH to realize the collective oper-
ations in the four application benchmarks. The STAR algorithms in
the table are the final algorithms selected for the application. Sev-
eral algorithms in the table are not included in STAR-MPI and thus
have not been discussed. The description of these algorithms can be
found in [3]. There are two main observations. First, MPICH has
limited software adaptability as it only considers the message size
and the number of processors. In particular, for all benchmarks ex-
cept NBODY, the communication algorithms that MPICH uses are
the same across both topologies. In the case of NBODY, the mes-
sage sizes of the all-gather operation on the two topologies were
not in the same range, which caused MPICH to use two different
communication algorithms. Since MPICH does not take into con-
siderations application behavior and all aspects of the architecture
(or platform), its predetermined selection of algorithms will be in-
adequate in many cases. Second, with the exception of NTUBE
and NBODY on topology (b), the table shows that the STAR-MPI
versions of communication algorithms for the different collective
operations are quite different than (and superior to) the ones used
by STATIC. The reason these algorithms are picked by STAR-MPI
but not STATIC, although the algorithms are available in its repos-
itory, is that STATIC has only architectural information and selects
the best algorithms for Mpptest, not the applications. As a result,
STATIC may not yield the most efficient algorithm for an applica-
tion since the program context is unavailable. STAR-MPI attains
full adaptability for the collective operations because it has access
to application information.

The results for the application benchmarks for MPICH, STAR,
and STATIC are summarized in Table 4. Note that in all cases,
STAR overhead is included in the results presented, while MPICH
and STATIC both have no run-time overhead. First, the ability of
STAR to select better communication algorithms than MPICH and
STATIC is evident in the significant performance gains shown in
the table. For all benchmarks running on the two topologies, except
for NTUBE on topology (a), STAR is superior to MPICH. For
example, for the FFTW benchmark, STAR achieves a 64.9% and
31.7% speed ups over MPICH on topology (a) and topology (b),
respectively. Also, substantial gains are seen for LAMMPS (85.6%)
and NTUBE (408.9%) on topology (b). The result for the NTUBE
benchmark on topology (a) shows that STAR performs slightly
worse than MPICH. This is because both STAR and MPICH use the
same communication algorithm to realize the all-gatherv operation
in the benchmark, with STAR paying the extra tuning overhead.

Comparing STAR to STATIC shows that in many cases STAR
is also superior. For example, on FFTW, STAR speedup relative
to MPICH is much larger than that of STATIC (65% to 11% on
topology (a) and 32% to 7.7% on topology (b)). STAR speedup is
also much greater on LAMMPS (b) and NBODY (a), and STAR



Table 3. Communication algorithms used in STAR, STATIC, and MPICH on different topologies (T).
T. STAR STATIC MPICH

FFTW (a) pair with light barrier pair with MPI barrier pair
(MPI Alltoall) (b) pair with light barrier tuned pair with N MPI barrier[3] pair

LAMMPS (a) Rab1-ring with light barrier Rab1-tuned[3] MPICH Rab. [3]
(MPI Allreduce) (b) Rab1-rdb Rab2-(tuned, tuned) [3] MPICH Rab.
NTUBE (a) TSLR pair with MPI barrier logical ring [3]
(MPI Allgatherv) (b) TSLR TSLR logical ring
NBODY (a) simple TSLR rdb
(MPI Allgather) (b) TSLR TSLR logical ring

does not slow down on NTUBE (a), as described earlier, whereas
STATIC does. This demonstrates the effectiveness of STAR that
has a subset of algorithms in selecting better communication algo-
rithms than STATIC, which has a super-set of algorithms. In two
of the other cases (LAMMPS (a), NBODY (b)), the performance
is similar, with STATIC slightly better. The one exception is on
NTUBE (b), where STATIC speedup is much larger than STAR.
We look at these last three cases next.

Table 4. Application completion times (seconds) on different
topologies (T).

program T. STAR STATIC MPICH
FFTW (a) 350.8 519.6 578.6

(b) 636.3 778.0 838.1
LAMMPS (a) 9780 9515 11040

(b) 1991 2432 3696
NTUBE (a) 568.0 725.0 566.0

(b) 758.4 601.0 3860
NBODY (a) 4002 4268 4304

(b) 2167 2120 2946

Table 5 shows the performance of STAR with and without over-
head, relative to STATIC. The performance of STAR without over-
head, denoted as STAR’, is obtained by running the final routine
selected by STAR-MPI without the tuning and monitoring over-
heads. From Figure 5, we can see that STAR-MPI without over-
heads performs at least as good as STATIC, which indicates that
the performance penalty (versus STATIC) is due to the overheads.
As will be shown in the next sub-section, the overhead is mainly
introduced in the Measure Select stage. The AEOS algorithm in
STAR-MPI is robust. If applications run for more iterations, the
tuning overheads will be amortized. For example, if NTUBE runs
for 2000 instead of 1000 time steps, the absolute STAR overhead
would remain roughly the same, while the relative STAR overhead
would decrease substantially. Notice that STATIC also has over-
head: STATIC must be run over a significant period of time when
a new platform is encountered. We are not considering STATIC
overheads in this experiment. Note also that the NTUBE (a) result
shows that tuning with Mpptest can sometimes lead to the algo-
rithms that significantly degrade the performance for an applica-
tion. This is a major limitation of STATIC.

Table 5. Application completion times (seconds).

program Topo. STAR STATIC STAR’
LAMMPS (a) 9780 9515 9420
NTUBE (b) 758.4 601.0 601.0
NBODY (b) 2167 2120 2120

4.3 STAR-MPI overhead

Using the micro-benchmarks similar to the code in Figure 4, we ex-
amine in depth the overhead of STAR-MPI. We measure the over-
head introduced by the execution of less efficient algorithms, Oc

MS ,
and the overheads for running the AEOS algorithm in both stages of
STAR-MPI, namely Oa

MS and OMA. Note that besides the OMA

overhead in the Monitor Adapt stage, STAR-MPI may introduce
extra overheads in this stage if it adapts to a different algorithm.
While we occasionally observe such adaptation (all such adaption
occurs in the first monitoring period in our experiments), it is a low
probability random event. Hence, we only evaluate Oa

MS , Oc
MS ,

and OMA. In the following, we first look at the per invocation time
of STAR-MPI collective routines in the Measure Select and Mon-
itor Adapt stages, and then break down the time in terms of the
different overheads.

Table 6. Per invocation time (ms) for collective operations in the
micro-benchmark.

STAR
operation T. msg MPICH Measure Monitor

size Select Adapt
all-to-all (a) 16KB 32.0 46.4 27.0

64KB 305.7 192.1 114.6
256KB 519.4 658.7 498.6

(b) 16KB 324.0 366.4 323.2
64KB 1493 1366 1108

256KB 6079 7154 5716
all-gather (a) 16KB 31.8 46.0 25.5

64KB 111.6 147.2 104.5
256KB 446.0 596.8 416.9

(b) 16KB 87.8 293.8 58.66
64KB 1532 1232 542

256KB 6432 5037 2004
all-reduce (a) 16KB 5.9 12.0 4.6

64KB 18.7 24.4 18.6
256KB 68.3 95.5 68.4

(b) 16KB 18.4 26.4 9.68
64KB 82.0 76.8 34.3

256KB 335.4 250 128.6

The per invocation times in the Measure Select and Moni-
tor Adapt stages of STAR-MPI all-to-all, all-gather, all-reduce rou-
tines with different message sizes on topology (a) and (b) are shown
in Table 6. The results are obtained using the micro-benchmark
with 500 iterations, which include the iterations for both the Mea-
sure Select and Monitor Adapt stages. For example, for all-gather
on topology (b) with message size 64KB, the Measure Select stage
occupies 60 invocations and the Monitor Adapt stage occupies 440
invocations. For reference, the per invocation time for MPICH is
also shown. There are a number of common observations for all



operations on both topologies. First, the per invocation times are
very different for the Measure Select stage and the Monitor Adapt
stage. This is because the best performing algorithm significantly
out-performs some of the algorithms in the repository. Second, as
shown in the table, although the per invocation time of STAR-MPI
in the Measure Select stage reflects a quite significant overhead,
such overhead is amortized (and then offset) by the gains due to
a better communication algorithm during the post tuning or Mon-
itor Adapt stage. Third, in some cases (e.g. all-gather on topology
(b) with message sizes of 64KB and 256KB), STAR-MPI out-
performs MPICH even in the Measure Select stage. This is because
some of the communication algorithms that STAR utilizes during
tuning are more efficient than MPICH.

Table 7. Per invocation overheads (in millisecond) for collective
operations in the micro-benchmark.

operation T. msg size Oa
MS Oc

MS OMA

all-to-all (a) 16KB 0.04 46.4 0.01
64KB 0.35 191.8 0.06

256KB 1.60 657.1 0.30
(b) 16KB 0.01 366.4 0.4

64KB 0.01 1366.0 1.4
256KB 0.01 7153.9 5.8

all-gather (a) 16KB 0.01 45.9 0.03
64KB 0.01 147.2 0.1

256KB 0.7 596.1 0.2
(b) 16KB 0.01 293.8 0.08

64KB 0.01 1232 0.8
256KB 0.01 5037.0 0.6

all-reduce (a) 16KB 0.02 12.0 0.02
64KB 0.01 24.39 0.03

256KB 0.01 95.4 0.05
(b) 16KB 0.05 26.3 0.03

64KB 0.15 76.5 0.07
256KB 0.5 249.5 0.20

Table 7 breaks down the per invocation time in terms of the
Oa

MS , Oc
MS , and OMA overheads for the same STAR-MPI collec-

tive routines. For the different message sizes, the table shows that
Oa

MS and OMA are very small and account for less than 0.3% of
the per invocation times, shown previously in Table 6, for the Mea-
sure Select stage or the Monitor Adapt stage. On the other hand,
we observe that Oc

MS can be very large. Thus, most of the over-
head of STAR-MPI is due to the communication overhead in the
tuning phase. This indicates that the selection of the set of commu-
nication algorithms is very critical for STAR-MPI to achieve high
performance. Moreover, for different topologies, the table shows
that STAR-MPI may introduce very different overheads. For exam-
ple, the STAR-MPI all-gather routine introduces much more over-
head on topology (b) than that on topology (a). This is because the
topology can significantly affect the performance of a collective
communication algorithm. Since the impact of topology is so sig-
nificant, it may be worthwhile to develop a performance model that
can take network topology into account and use the prediction from
such a model to reduce the number of algorithms to be probed.

4.4 STAR-MPI on Lemieux

To further study the effectiveness and impact of our STAR-MPI
technique on different platforms, we perform experiments on
Lemieux, a supercomputing cluster located in Pittsburgh Super-
computing Center (PSC) [19]. The machine consists of 750 Com-
paq Alphaserver ES45 nodes, each of which includes four 1-GHz
SMP processors with 4GB of memory. The nodes are connected
with a Quadrics interconnection network, and they run Tru64 Unix

operating system. The experiments are conducted with a batch par-
tition of 128 processors running on 32 dedicated nodes although
other jobs were concurrently using the network. The benchmarks
are compiled with the native mpicc on the system and linked with
the native MPI and ELAN libraries. ELAN is a low-level internode
communication library that efficiently realizes many features of the
Quadrics interconnection such as multicast. We will use NATIVE
to denote the performance of the native MPI routines.

The algorithms used in the collective communication routines in
the native MPI library are unknown to us. The Quadrics intercon-
nect in this machine has very efficient hardware support for mul-
ticast. As a result, for collective operations that have a multicast
or broadcast component, including all-gather, all-gatherv, and all-
reduce, the native routines out-perform STAR-MPI (sometimes to
a large degree) since all STAR-MPI algorithms are based on point-
to-point primitives. However, STAR-MPI all-to-all routine offers
better performance than the native routine on this cluster.

The micro-benchmark results for MPI Alltoall (500 iterations)
on Lemieux are shown in Figure 5. Part (a) of the figure shows
the results for small messages while part (b) shows the results for
medium/large messages. As shown in both parts of the figure, for
all message sizes, STAR offers higher performance than NATIVE,
especially as the message size increases. For example, when the
message size is 256KB, the respective completion times for STAR
and NATIVE are 1005.6ms and 1329.5ms with STAR achieving
a speed up of 32.3%. Similar performance trend is evident when
experimenting on the FFTW application benchmark with l = 5700
and nfft = 500. The execution time for the benchmark using STAR-
MPI is 184.3s as opposed to 212.8s for NATIVE, which is a 15.5%
speed up.

Although the communication algorithms in STAR-MPI were
designed for Ethernet-switched clusters, not for Lemieux, as shown
in this experiment, STAR-MPI can improve performance for other
types of clusters. This demonstrates the robustness of the proposed
delayed finalization technique.

5. CONCLUSION
In this paper, we proposed the delayed finalization of MPI collec-
tive communication routines (DF) technique to improve the soft-
ware adaptability of MPI libraries. Using the DF approach, we de-
veloped STAR-MPI. STAR-MPI is able to achieve adequate soft-
ware adaptability for MPI collective routines, which many library
implementations of MPI fall short of. By utilizing a set of differ-
ent communication algorithms that perform well for different sit-
uations and then empirically measuring the performance of these
algorithms in the context of both the application and platform,
STAR-MPI yields efficient, customized MPI collective routines for
the application on the platform. Performance results showed that
STAR-MPI routines incur reasonable overheads, deliver high per-
formance, and significantly out-perform the routines in the tradi-
tional MPI library in many cases.

References
[1] J. Bilmes, K. Asanovic, C. Chin, and J. Demmel. “Optimizing

Matrix Multiply using PHiPAC: a Portable, High-Performance, ANSI
C Coding Methodology.” In Proceedings of the ACM SIGARC
International Conference on SuperComputing, 1997.

[2] J. Bruck, C. Ho, S. Kipnis, E. Upfal, and D. Weathersby, “Efficient
Algorithms for All-to-all Communications in Multiport Message-
Passing Systems.” IEEE Transactions on Parallel and Distributed
Systems, 8(11):1143-1156, Nov. 1997.

[3] A. Faraj, P. Patarasuk, and X. Yuan. “Automatic Generation and
Tuning of MPI Collective Communication Routines.” The 19th ACM
International Conference on Supercomputing (ICS), Cambridge,
Massachusetts, June 20-22, 2005.



 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

4K2K1K5122564

T
im

e 
(m

s)

Message size (B)

STAR
NATIVE

(a) small messages

 0

 200

 400

 600

 800

 1000

 1200

 1400

256K128K64K32K16K8K

T
im

e 
(m

s)

Message size (B)

STAR
NATIVE

(b) medium-large messages

Figure 5. All-to-all micro-benchmark results on 128 processors
(Lemieux), average per invocation time.

[4] A. Faraj and X. Yuan. Message Scheduling for All–to–all Personal-
ized Communication on Ethernet Switched Clusters. IEEE IPDPS,
April 2005.

[5] A. Faraj and X. Yuan. “Bandwidth Efficient All-to-All Broadcast
on Switched Clusters.” The 2005 IEEE International Conference on
Cluster Computing, Boston, MA, Sept 27-30, 2005.

[6] M. Frigo and S. Johnson. “FFTW: An Adaptive Software Architecture
for the FFT.” In Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), volume 3, page
1381, 1998.

[7] William Gropp and Ewing Lusk, “Reproducible Measurements of
MPI Performance Characteristics.” Technical Report ANL/MCS-
P755-0699, Argonne National Labratory, Argonne, IL, June 1999.

[8] FFTW. http://www.fftw.org.
[9] LAM/MPI Parallel Computing. http://www.lam-mpi.org.

[10] M. Lauria and A. Chien. MPI-FM: High Performance MPI on
Workstation Clusters. Journal of Parallel and Distributed Computing,
40(1), January 1997.

[11] A. Karwande, X. Yuan, and D. K. Lowenthal. CC-MPI: A Compiled
Communication Capable MPI Prototype for Ethernet Switched
Clusters. In ACM SIGPLAN PPoPP, pages 95-106, June 2003.

[12] T. Kielmann, et. al. Magpie: MPI’s Collective Communication
Operations for Clustered Wide Area Systems. In ACM SIGPLAN
PPoPP, pages 131–140, May 1999.

[13] LAMMPS: Molecular Dynamics Simulator, Available at
http://www.cs.sandia.gov/ sjplimp/lammps.html.

[14] The MPI Forum. The MPI-2: Extensions to the Message Passing In-
terface, July 1997. Available at http://www.mpi-forum.org/docs/mpi-

20-html/ mpi2-report.html.
[15] MPICH - A Portable Implementation of MPI. Available at

http://www.mcs.anl.gov/mpi/mpich.
[16] H. Ogawa and S. Matsuoka. OMPI: Optimizing MPI Programs Using

Partial Evaluation. In Supercomputing’96, November 1996.
[17] Parallel N-Body Simulations, Available at http://www.cs.cmu.edu/ scan-

dal/alg/nbody.html.
[18] P. Patarasuk, A. Faraj, and X. Yuan. “Pipelined Broadcast on

Ethernet Switched Clusters.” The 20th IEEE International Parallel &
Distributed Processing Symposium (IPDPS), Rhodes Island, Greece,
April 25-29, 2006.

[19] Pittsburg Supercomputing Center, Available at
http://www.psc.edu/machines/tcs/lemieux.html.

[20] R. Rabenseifner, “A new optimized MPI reduce and allreduce algo-
rithms.” Available at http://www.hlrs.de/organization/par/services/models
/mpi/myreduce.html, 1997.

[21] R. Rabenseinfner, “Automatic MPI counter profiling of all users:
First results on CRAY T3E900-512,” In Proceedings of the Message
Passing Interface Developer’s and User’s Conference, pages 77-85,
1999.

[22] I. Rosenblum, J. Adler, and S. Brandon. Multi-processor molecular
dynamics using the Brenner potential: Parallelization of an implicit
multi-body potential. International Journal of Modern Physics, C
10(1):189-203, Feb. 1999.

[23] S. Sistare, R. vandeVaart, and E. Loh. Optimization of MPI
Collectives on Clusters of Large Scape SMPs. In Proceedings of
SC99: High Performance Networking and Computing, 1999.

[24] H. Tang, K. Shen, and T. Yang. Program Transformation and
Runtime Support for Threaded MPI Execution on Shared-Memory
Machines. ACM Transactions on Programming Languages and
Systems, 22(4):673–700, July 2000.

[25] R. Thakur, R. Rabenseifner, and W. Gropp. Optimizing of Collective
Communication Operations in MPICH. ANL/MCS-P1140-0304,
Mathematics and Computer Science Division, Argonne National
Laboratory, March 2004.

[26] S. S. Vadhiyar, G. E. Fagg, and J. Dongarra. Automatically
Tuned Collective Communications. In Proceedings of SC’00: High
Performance Networking and Computing, 2000.

[27] R. C. Whaley and J. Dongarra. Automatically tuned linear algebra
software. In SuperComputing’98: High Performance Networking and
Computing, 1998.


