
Jigsaw: A High-Utilization,
Interference-Free Job

Scheduler for Fat-Tree Clusters
Zach Hegemann and Patrick Berry

Jigsaw: An Overview

● Jobs on HPC clusters can suffer significant performance degradation due to
inter-job network interference.

● Different approaches to mitigate this interference typically focus on reactive
routing schemes.

● Implementing scheduling policies that proactively enforce network isolation for
every job can completely eliminate this interference. Existing schedulers
typically have lower system utilization, however.

● We present Jigsaw, a job-isolating scheduling approach for three-level
fat-trees that achieves 95-96% utilization.

Jigsaw Introduction

● Schedulers on most HPC clusters allocate dedicated nodes to each job, but do not
take network resources into account. This leads to multi-node jobs competing for
resources on the network.

○ This can lead to substantial job performance degradation.
● Having a job scheduler enforce complete network isolation is, conceptually, an

elegant way to alleviate inter-job network interference. This comes with challenges,
however:

○ Ensuring performance isn’t degraded by guaranteeing each job has access to the same underlying
bandwidth in its isolation.

■ This requirement leads to constraints on job-to-node assignment and thus system utilization.
● Jigsaw is a scheduling approach that removes the system utilization barrier.

○ Simultaneously achieves job-level network isolation, full bandwidth of job allocations, and high system
utilization.

Jigsaw Background: Fat-Tree Networks

● A fat-tree is a tree whose links have higher bandwidth at each level going up
from leave to root.

● Because the link bandwidth increases, the links near the root of the tree do
not create a bottleneck when nodes communicate across the tree

Jigsaw Background: Inter-Job Network Interference

● Inter-job network interference has been identified as a culprit behind job
performance variability on HPC systems.

○ On torus- and dragonfly- topologies, it can cause applications to slow down by 100-150%.
○ Fat-tree networks with multi-job workloads, under static routing, can slow down by as much as

120% in controlled experiments and up to 66% in production applications.
● Exploring techniques to mitigate inter-job network interference is paramount

Jigsaw Background: Existing Mitigation Approaches

● Routing-Based Approaches
○ Route packets in a way that reduces congestion after job placements are already fixed. An

advantage of this is that there aren’t any scheduling constraints, leaving node utilization
unaffected.

○ These routing techniques cannot guarantee that the worst-case performance degradation for
jobs is small.

● Scheduling Approaches
○ Inter-job network interference can be completely eliminated by using a scheduling policy that

guarantees isolated network partitions for each job.
○ Job-isolating scheduling requires new node placement constraints, and these can lead to

system fragmentation and lower node utilization.
■ Previous job-isolating approaches, node utilization dropped by ~10%.

Jigsaw Theory: Motivation
The goals of the Job Scheduler

a) The scheduler must allocate isolated partitions that are free from inter-job interference
b) The scheduler must allow access to full interconnect bandwidth inside each partition
c) The scheduler strives to provide high utilization- at least 95%- to keep high throughput

Satisfying any two of the three goals
is straightforward.

The challenge is achieving all three
at once!

Jigsaw Theory: Motivation

Isolation: ensures that jobs do not interfere with each other on the network. This
requires that each node and each link be (exclusively) assigned to at most one
job. Most existing job schedulers ensure only node isolation.

Jobs A and B
both cannot use
the same node
and edge

Jigsaw Theory: Motivation
Full interconnect bandwidth: ensures that an allocated partition has the
bandwidth properties of the fat-tree itself

rearrangeable non-blocking: any permutation of traffic among the nodes of a
job can be routed such that only one flow travels over any of the job’s links

Don’t share paths/links

1. Uplinks != Downlinks is no good

2. Cannot allow full generality in node-to-job assignment. Two flows are forced to share
the left-most link in the example

3. Balanced uplinks and downlinks have been selected independently at each switch.
Although a sufficient amount of links, they are wasted because they cannot reach the
edge. Poorly chosen.

Jigsaw Theory: Motivation

High Utilization: This generally helps in reducing fragmentation of nodes and
links. The challenge is to provide high utilization while maintaining the isolation
and full bandwidth constraints.

1. Internal fragmentation of nodes or links occurs when a given scheme requires
that a leaf allocate all nodes or links to the same job, but the job does not use
all nodes or links

2. External fragmentation of nodes or links occurs when there are enough nodes
or links for a job, but making the allocation violates node and link conditions

Jigsaw Theory: Motivation

Examples of Fragmentation, reducing the system’s utilization

JigSaw Theory: Motivation

LAAS approach
TA approach: links are reserved
for the first job that can
physically reach them

TA approach: requires that a
job must be assigned to single
leaf if it can fit

● We note that a three-level fat tree is composed of a set of independent
two-level fat-trees connected together at the third level by spine switches. For
brevity, we refer to these two-level subtrees as simply trees for the remainder
of this section

● Isolation
○ nodes i and j are assigned to two different jobs, then i != j
○ links k and l are assigned to two different jobs, then k != l

Jigsaw Theory: Formal Conditions, Isolation

Jigsaw Theory: Formal Conditions, Full Bandwidth

Jigsaw Theory: Formal Conditions, Full Bandwidth

At the node level, the number of nodes assigned to a job must be exactly the
number of nodes that the job requested. Denoting the number of requested nodes
by Nr and the number of assigned nodes by N, this means that N = Nr . At the link
level, every leaf and L2 switch must be allocated the same number of uplinks as
downlinks

Jigsaw Theory: Formal Conditions, Full Bandwidth

Jigsaw Theory: Full Bandwidth Proof Sketch

The previous conditions are both necessary and sufficient for a job’s allocation to
be rearrangeable non-blocking.

● A network is rearrangeable non-blocking if, for any permutation of traffic
among its nodes, there exists a routing that maps at most one flow of traffic to
every link.

Jigsaw Theory: Full Bandwidth Proof Sketch

● To prove the necessity of the conditions it is shown that if each individual
condition does not hold, then the allocation cannot support a particular traffic
permutation among its nodes without contention

● Specifically, two subsets of nodes of size n are picked. It is shown that if one
subset sends n flows to the other, they will be confined to fewer than n links.

○ The extended version of the paper proves that, if all conditions are not met, flow conflicts
always occur!

Jigsaw Theory: Full Bandwidth Proof Sketch

● To prove the sufficiency of the
conditions, an arbitrary partition
that satisfies them is taken and
shown that an arbitrary
permutation can be routed with
at most one flow per link.

○ This is done by viewing the
three-level-fat-tree as an equivalent
Clos network.

Jigsaw Theory: Full Bandwidth Proof Sketch

● The general method of the proof is
inspired by the existing result that
two-level fat-trees are rearrangeable
non-blocking.

● Suppose P is an arbitrary permutation of
input nodes to output nodes, such that the
the flow from input to output nodes forms a
bijection.

○ According to Hall’s Marriage Theorem,
there exists a subset of flows in P such
that the subset contains exactly one flow
coming from each leaf and one flow going
to each leaf.

Jigsaw Theory: Full Bandwidth Proof Sketch

● All flows in the subset may be routed
across the same part of the inner-network
(ex. the grey network in Fig 4.), with each
link at the first and last stage carrying
exactly one flow.

○ The inner-network is a smaller Clos
network, equivalent to a two-level fat-tree.

○ As a two-level fat-tree is rearrangeable
non-blocking, this subset of flows is
satisfactorily routed across the three-level
fat-tree.

● This subset is then removed from the
network (leaving behind white switches),
and the process is iterated until every flow
is routed.

Jigsaw Implementation
Still a few more issues….

1. The conditions we found allow a wide variety of legal allocations—the number

of possible allocations is exponential in the size of the tree, making an

exhaustive search for placements infeasible for large systems

2. No prediction on free nodes on a given leaf, fragmentation - For a large job,

there may be limited number of options

The solution …

1. Jigsaw requires job allocations that span three levels to use all nodes per leaf
except for the remainder leaf

Jigsaw Evaluation Setup

● To evaluate different scheduling approaches, job queues on various fat-trees
were simulated.

● Jigsaw is compared to several other job-isolating scheduling approaches and
to Baseline: a traditional, unconstrained scheduler. Evaluation is measured in
terms of average system utilization, given by

● Nj and N{system} are the number of nodes in job j and the total number of
nodes in the system, respectively; tj and t{total} are the runtime of job j and
total time spent running jobs in the trace, respectively.

Jigsaw Evaluation Setup: Clusters and Traces

● Evaluation was done on a range of full fat-trees with switch radix varied to
attain different node counts.

○ Experiments were ran with four different cluster sizes: 1024, 1458, 2662, and 5488.
● Job queue traces from several LLNL clusters were used, including Thunder

and Atlas as well as Cab. Synthetic traces were also used; generated in the
same way as the ones in the original LaaS paper.

Jigsaw Evaluation Setup: Schemes for Comparison

● Jigsaw was compared to three approaches:
○ Links as a Service (Laas): a scheduler that allocates dedicated network links (and nodes) to

each job. LaaS, unlike Jigsaw, does not develop explicit placement conditions for three-level
fat-trees.

○ Topology-Aware Scheduling (TA): links are not explicitly allocated to jobs. Instead, TA follows a
set of node allocation rules to avoid all placements in which two jobs could contend for links
under arbitrary routing.

○ Least-Constrained Scheduling with Link-Sharing (LC+S): allows jobs to share network links as
much as possible while maintaining interference levels that are expected to be negligible.

Jigsaw Evaluation Setup: Experiment Parameters

● Job Performance Scenarios: when job turnaround times and makespan are
evaluated, the fact that some jobs will likely perform better when ran in
isolation is taken into account.

○ Four scenarios from the TA scheduling paper (5%, 10%, 20%, and “V2” scenarios) are used.
● Link-Sharing Parameters: For the LC+S experiments, average bandwidth

needs for each job must be determined.
● General Parameters:

○ Three synthetic traces have mean job sizes of 16, 22, and 28, and they’re simulated on 1024-,
2662-, and 5488-node clusters, respectively.

Jigsaw Results: Average System Utilization

Jigsaw Results: Average Job Turnaround Time

Job turnaround time is the length of time between when a given job arrives in the
queue and when it finishes running

Jigsaw Results: Average Job Makespan

Makespan is the length of time between when the first job arrives in the queue and
when the last job running on the system completes

Our Jigsaw Conclusion

Since each job is guaranteed network isolation, application
developers can focus their efforts on optimizing intra-job
network performance without worrying about network
traffic outside their control, and performance variability due
to inter-job network interference is eliminated

Questions ? ? ?

