High-Performance Libraries and Tools

HPC Fall 2007
Prof. Robert van Engelen
Overview

- Dense matrix
 - BLAS (serial)
 - ATLAS (serial/threaded)
 - LAPACK (serial)
 - Vendor-tuned LAPACK (shared memory parallel)
 - ScaLAPACK/PLAPACK (distributed memory parallel)
 - FLAME (an algorithm derivation framework)

- Sparse matrix
 - PETSc

- Further reading
The Basic Linear Algebra Subprograms (BLAS) consist of a set of lower-level linear algebra operations.

- **Level 1**: vector-vector
 - $O(n)$ operations on $O(n)$ data
 - Bandwidth to memory is a limiting factor

- **Level 2**: matrix-vector
 - $O(n^2)$ operations on $O(n^2)$ data
 - Vectors kept in cache

- **Level 3**: matrix-matrix
 - $O(n^3)$ operations on $O(n^2)$ data
 - Blocked matrices kept in cache

Netlib’s BLAS is a reference implementation.

Examples

- $y \leftarrow \alpha x + y$
- $y \leftarrow \alpha Ax + \beta y$
- $Tx = y$ (Triangular T)
- $C \leftarrow \alpha AB + \beta C$
- $B \leftarrow \alpha T^{-1}B$ (Triangular T)
GotoBlas and Vendor-Tuned BLAS

- Implemented by Kazushige Goto
- Optimized for cache and Translation Lookaside Buffer (TLB)
- Restrictive open-source license
- Licensed to vendors for vendor-tuned BLAS libraries

Vendor-tuned BLAS
- Accelerate framework (Apple)
- MLK (Intel)
- ACML (AMD)
- ESSL (IBM)
- MLIB (HP)
- Sun performance library
ATLAS

- The Automatically Tuned Linear Algebra Software (ATLAS) is a self-tuned BLAS version
- Installation tests numerical kernels and (other parts of) the code to determine which parameters are best for a particular machine, e.g. blocking, loop unrolling, ...
- Faster than the reference implementation
- Freely available
DGEMM

Pentium4 (3.6 GHz)

Image source: Robert van de Geijn (TACC)

12/4/07

HPC Fall 2007
DGEMM

Itanium2 (1.5 GHz)

Image source: Robert van de Geijn (TACC)

12/4/07
LAPACK

- Linear Algebra PACKage (LAPACK) written in Fortran
- Built on BLAS
- Like BLAS, has standard set of APIs (Application Programming Interfaces)
 - Data type: real and complex, single and double precision
 - Matrix shapes: general dense, diagonal, bidiagonal, tridiagonal, banded, trapezoidal, Hessenberg
 - Matrix properties: general, orthogonal, positive definite, Hermitian, symmetric
- Reference implementation from Netlib
- Vendor-tuned versions available
 - Some for shared memory parallel
ScaLAPACK/PLAPACK

- ScaLAPACK/PLAPACK are versions of LAPACK for distributed memory MIMD parallel machines
 - Subset of LAPACK routines
- ScaLAPACK is built on BLAS and MPI
- ScaLAPACK reference implementation from Netlib

- PLAPACK is a project at UT Austin (TACC)
FLAME

- Formal Linear Algebra Methods Environment (FLAME)
- LAPACK code is hard to write/read/maintain/alter
- “Transform the development of dense linear algebra libraries from an art reserved for experts to a science that can be understood by novice and expert alike”
 - Notation for expressing algorithms
 - A methodology for systematic derivation of algorithms using loop invariants
 - Application Program Interfaces (APIs) for representing the algorithms in code
 - Tools for mechanical derivation, implementation and analysis of algorithms and implementations
Algorithm: $[A] := LU_{BLK_VAR5}(A)$

Partition $A \rightarrow \begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix}$

where A_{TL} is 0×0

while $m(A_{TL}) < m(A)$ do

Determine block size b

Repartition

$\begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \rightarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{21} & A_{22} \end{pmatrix}$

where A_{11} is $b \times b$

$A_{11} = LU(A_{11})$

$A_{12} = TRILU(A_{11})^{-1} A_{12}$

$A_{21} = A_{21}TRIU(A_{11})^{-1}$

$A_{22} = A_{22} - A_{21} A_{12}$

Continue with

$\begin{pmatrix} A_{TL} & A_{TR} \\ A_{BL} & A_{BR} \end{pmatrix} \leftarrow \begin{pmatrix} A_{00} & A_{01} & A_{02} \\ A_{10} & A_{11} & A_{12} \\ A_{20} & A_{31} & A_{22} \end{pmatrix}$

endwhile
AutoFLAME

Operation: \[L = \text{TrinvLVar1}(L) \]

Partition
\[L = \begin{pmatrix} L_{11} & L_{12} \\ L_{12} & L_{22} \end{pmatrix} \]

Lops invariant: \((L_{11})^{-1} L_{12} = L_{22} L_{12} \)

While \(L_{11} < 0 \)

Partition:
\[\begin{pmatrix} L_{11} & L_{12} \\ L_{12} & L_{22} \end{pmatrix} \]

Loop invariant before the update:
\[\begin{pmatrix} L_{11} & L_{12} \\ L_{12} & L_{22} \end{pmatrix} \]

\[L_{11} := L_{11}^{-1} \]
\[L_{12} := -L_{12} L_{22} L_{12} \]

Constant term:
\[\begin{pmatrix} L_{11} & L_{12} \\ L_{12} & L_{22} \end{pmatrix} \]

Loop invariant after the update:
\[\begin{pmatrix} L_{11} & L_{12} \\ L_{12} & L_{22} \end{pmatrix} \]

End while
LU w/ Pivoting on 8 Cores
4 x AMD 2.4GHz dual-core Opteron 880

LU (with pivoting) performance with various libraries (m = p, n = p)

- ACML 3.60
- GotoBLAS 1.09 + LAPACK 3.0
- LAPACK 3.0 + GotoBLAS 1.09
- FLAME + ACML 3.60
- FLAME + GotoBLAS 1.09 + LAPACK 3.0
- FLAME + LAPACK 3.0 + GotoBLAS 1.09

GotoBLAS
FLAME
LAPACK

Image source: Robert van de Geijn (TACC)
12/4/07
QR Factorization on 8 Cores

4 x AMD 2.4GHz dual-core Opteron 880

Image source: Robert van de Geijn (TACC)
Cholesky on 8 Cores
4 x AMD 2.4GHz dual-core Opteron 880

Image source: Robert van de Geijn (TACC)
12/4/07 HPC Fall 2007
PETSc

- Portable, Extensible Toolkit for Scientific Computation (PETSc) for distributed memory MIMD parallel machines
 - Vector/matrix formats and array operations (serial and parallel)
 - Linear and nonlinear solvers
 - Limited ODE integrators
 - Limited grid/data management (serial and parallel)
- Built on BLAS, LAPACK, and MPI
- Basically a solver library for general sparse matrices
 - User writes main() program
 - User orchestrates computation via object creations
 - User controls the basic flow of the PETSc program
 - PETSc propagates errors from underlying libs
PETSc Numerical Components

<table>
<thead>
<tr>
<th>Nonlinear Solvers (SNES)</th>
<th>Time Steppers (TS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newton-based Methods</td>
<td>Euler</td>
</tr>
<tr>
<td>Line Search</td>
<td>Backward Euler</td>
</tr>
<tr>
<td>Trust Region</td>
<td>Pseudo Time Stepping</td>
</tr>
<tr>
<td>Other</td>
<td>Other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Krylov Subspace Methods (KSP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMRES</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Preconditioners (PC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additive Schwartz</td>
</tr>
<tr>
<td>Jacobi</td>
</tr>
<tr>
<td>ICC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Matrices (Mat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressed Sparse Row (AIJ)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distributed Arrays (DA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vectors (Vec)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index Sets (IS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indices</td>
</tr>
<tr>
<td>Stride</td>
</tr>
</tbody>
</table>

Image source: PETSc project
PETSc Flow of Control for PDEs

Image source: PETSc project
12/4/07
HPC Fall 2007
PETSc Linear Solver Example

\[Ax = b \]

```c
KSP  ksp; /* linear solver context */
Mat  A; /* matrix */
Vec  x, b; /* solution, RHS vectors */
int n; /* problem dimension */

MatCreate(PETSC_COMM_WORLD, PETSC_DECIDE, PETSC_DECIDE, n, n, &A);
MatSetFromOptions(A);
/* (code to assemble matrix A not shown) */
VecCreate(PETSC_COMM_WORLD, &x);
VecSetSizes(x, PETSC_DECIDE, n);
VecSetFromOptions(x);
VecDuplicate(x, &b);
/* (code to assemble RHS vector not shown) */
KSPCreate(PETSC_COMM_WORLD, &ksp);
KSPSetOperators(ksp, A, A, DIFFERENT_NONZERO_PATTERN);
KSPSetFromOptions(ksp);
KSPSolve(ksp, b, x);
KSPDestroy(ksp);
```
PETSc Nonlinear Solver Interface: SNES

- For problems arising from PDEs
- Uses Newton-based methods
 - (Approximately) solve $F'(u_k) = -F(u_k)$
 - Update $u_{k+1} = u_k + \Delta u_k$
- Support the general solution to $F(u) = 0$
- User provides:
 - Code to evaluate $F(u)$
 - Code to evaluate Jacobian of $F(u)$
 - Or use (built-in) first-order sparse finite difference approximation
 - Or use automatic differentiation, e.g. ADIFOR and ADIC
PETSc Nonlinear Solver Example

```c
SNES snes; /* nonlinear solver context */
Mat J; /* Jacobian matrix */
Vec x, f; /* solution, RHS vectors */
int n, its; /* problem dimension, number of iterations */
ApptCtx uc; /* user-defined application context */

MatCreate(PETSC_COMM_WORLD, n, n, &J);
VecCreate(PETSC_COMM_WORLD, n, &x);
VecDuplicate(x, &f);

SNESCreate(PETSC_COMM_WORLD, SNES_NONLINEAR_EQUATIONS, &snes);
SNESSetFunction(snes, f, EvaluateFunction, uc);
SNESSetJacobian(snes, J, EvaluateJacobian, uc);
SNESSetFromOptions(snes);

SNESSolve(snes, x, &its);

SNESDestroy(snes);
```
PETSc Meshes

Communication

- Geometric Data
- Data Structure Creation
- Ghost Point Data Structures
- Ghost Point Updates

Local Numerical Computation

- Loops over I,J,K indices
- Loops over entities

structured meshes

- stencil [implicit]
- DACreate()
- DA AO
- DAGlobalToLocal()

unstructured meshes

- elements
- edges
- vertices
- VecScatterCreate()
- VecScatterAO
- VecScatter()

Image source: PETSc project
PETSc Global vs Local Meshes

Global: each process stores a unique local set of vertices (and each vertex is owned by exactly one process)

Local: each process stores a unique local set of vertices as well as ghost nodes from neighboring processes

Image source: PETSc project
PETSc Distributed Arrays

- Form a DA:
 - DACreate1d(…, DA*)
 - DACreate2d(…, DA*)
 - DACreate3d(…, DA*)

- Create the corresponding PETSc vectors
 - DACreateGlobalVector(DA, Vec*)
 - DACreateLocalVector(DA, Vec*)

- Update ghost points (scatter global vector into local parts, including ghost points)
 - DAGlobalToLocalBegin(DA, …)
 - DAGlobalToLocalEnd(DA, …)
Further Reading

- [SRC] pages 621-647
- Netlib organization: www.netlib.org
- FLAME project: www.cs.utexas.edu/users/flame
- PETSc project: www.mcs.anl.gov/petsc
- Linear algebra Wiki: www.linearalgebrawiki.org