Overview

- Parallel matrix multiplication
- Fox’ algorithm in MPI
- Iterative solver in MPI
- Heat distribution problem in MPI
- Further reading
Parallel Matrix Multiply: Direct Implementation

- Basic algorithm, $n \times l$ matrix A, $l \times m$ matrix B, $n \times m$ matrix C

$$C = A \times B$$

$$c_{i,j} = \sum_{k=0}^{l-1} a_{i,k} b_{k,j}$$

- Assume square matrices, thus $n = m = l$
- $P = n \times n$ worker processors with $c_{i,j}$ stored locally on $p_{i,j}$
- One master processor sends $2n$ elements $a_{i,k}$ and $b_{k,j}$ for $k = 0, \ldots, n-1$ to each worker $p_{i,j}$
- Workers compute and return $c_{i,j}$ to master processor
- Computation: $t_{comp} = 2n$
- Communication: $t_{comm} = n^2(t_{startup} + 2n \ t_{data}) + n^2(t_{startup} + t_{data})$
Parallel Matrix Multiply:
Block Matrix Multiplication

- Block matrix multiplication algorithm, with \(s \times s \) blocks of size \(m \times m \)
 where \(m = n/s \)

 \[
 \text{for } p = 0 \text{ to } s-1 \\
 \quad \text{for } q = 0 \text{ to } s-1 \\
 \quad \quad C_{p,q} = 0 \\
 \quad \text{for } r = 0 \text{ to } s-1 \\
 \quad \quad C_{p,q} = C_{p,q} + A_{p,r} \times B_{r,q} \quad // \text{matrix + and } \times \text{operations}
 \]

- \(P = s \times s \) worker processors with submatrices \(C_{p,q} \) stored locally on \(p_{p,q} \)
- Master processor sends \(2s \) blocks \(A_{p,r} \) and \(B_{r,q} \) for \(r = 0, \ldots, s-1 \) to each worker \(p_{p,q} \)
- Workers compute inner loop and return \(C_{p,q} \) to master processor
- Computation: \(t_{\text{comp}} = s(2m^3 + m^2) = O(sm^3) = O(nm^2) \)
- Communication: \(t_{\text{comm}} = s^2 \left[2(t_{\text{startup}} + nm \ t_{\text{data}}) + (t_{\text{startup}} + m^2 t_{\text{data}}) \right] \)
Parallel Matrix Multiply: Lower Bound on Complexity

- First assume we have $P = n \times n$ processors
- Each processor computes $c_{i,j}$ in parallel
- Assume zero communication overhead, so $a_{i,k}$ and $b_{k,j}$ for $k = 0, \ldots, n-1$ are directly available to all processors
- Now add another dimension of n processors ($P = n \times n \times n$) to compute

\[c_{i,j} = \sum_{k=0}^{n-1} a_{i,k} b_{k,j} \]

using a parallel tree-reduction in $\log n$ steps

- Computation: $t_{comp} = 1 + \log n = O(\log n)$
- Not cost optimal: $O(P \log n) = O(n^3 \log n) \neq O(n^3)$
Parallel Matrix Multiply: Recursive Implementation

- Block matrix multiplication in recursion by decomposing matrix in 2×2 submatrices and computing the submatrices recursively

```c
Mat matmul(Mat A, Mat B, int s)
{
    if (s == 1)
        C = A * B;
    else
    {
        s = s/2;
        P0 = matmul(A_p,p, B_p,p, s);
        P1 = matmul(A_p,q, B_q,p, s);
        P2 = matmul(A_p,p, B_p,q, s);
        P3 = matmul(A_p,q, B_q,q, s);
        P4 = matmul(A_q,p, B_p,p, s);
        P5 = matmul(A_q,q, B_p,q, s);
        P6 = matmul(A_q,p, B_q,p, s);
        P7 = matmul(A_q,q, B_q,q, s);
        C_p,p = P0 + P1;
        C_p,q = P2 + P3;
        C_q,p = P4 + P5;
        C_q,q = P6 + P7;
    }
    return C;
}
```

- Level of parallelism increases with deepening recursion
- Suitable for shared memory systems
- Excessive message passing on distributed memory systems
Parallel Matrix Multiply: Cannon’s Algorithm

1. Initially each $p_{i,j}$ has $a_{i,j}$ and $b_{i,j}$
2. Align elements $a_{i,j}$ and $b_{i,j}$ by reordering them so that $a_{i,j+i}$ and $b_{i+j,j}$ are on $p_{i,j}$
3. Each $p_{i,j}$ computes
 \[c_{i,j} = a_{i,j+i} \times b_{i+j,j} \]
 ($a_{i,j+i}$ and $b_{i+j,j}$ are local on $p_{i,j}$)
4. For $k = 1$ to $n-1$ repeat 5-7:
5. Rotate A left by one column
6. Rotate B up by one row
7. Each $p_{i,j}$ computes
 \[c_{i,j} = c_{i,j} + a_{i,j+i+k} \times b_{i+j+k,j} \]
 ($a_{i,j+i+k}$ and $b_{i+j+k,j}$ are local on $p_{i,j}$ after k rotations)

Note: subscripts are modulo n

Note: send-recv wrap around the processor grid
Parallel Matrix Multiply: Analysis of Cannon’s Algorithm

- Consider block matrix multiplication with Cannon’s algorithm, with $s \times s$ blocks of size $m \times m$ where $m = n/s$

- Initial alignment requires $s-1$ rotations of A and B each moving $m \times m$ blocks in parallel, and one $m \times m$ matrix multiply per processor in $2m^3$ time

- Algorithm takes $s-1$ steps
 - Each processor performs a local matrix multiply on its $m \times m$ block in $2m^3$ time
 - Rotation of A and B on $m \times m$ blocks, where each processor sends and receives two $m \times m$ blocks (one per row and one per column)

- Computation: $t_{comp} = 2sm^3 = 2m^2n = O(m^2n)$

- Communication: $t_{comm} = 4(s-1)(t_{startup} + m^2t_{data})$
Parallel Matrix Multiply:
Systolic Array

“Two-dimensional pipeline”

Each processor repeats a “recv-compute-send” stage n times:

recv(a, p$_{i,j-1}$)
recv(b, p$_{i-1,j}$)
$c = c + a*b$
send(a, p$_{i,j+1}$)
send(b, p$_{i+1,j}$)
Parallel Matrix Multiply: Fox’ Algorithm

- Similar to Cannon’s algorithm
- No initial alignment
- Combines broadcast of A with rotation of B

1. For $k=0$ to $n-1$ repeat 2-4:
2. For each row i, broadcast element $a_{i,i+k}$ along that row
3. Compute $c_{i,j} = c_{i,j} + a_{i,i+k} \cdot b_{i+k,j}$ ($a_{i,i+k}$ and $b_{i+k,j}$ are local on $p_{i,j}$)
4. Rotate B up by one row

For this algorithm, what is t_{comp} and t_{comm}?
Parallel Matrix Multiply:
Fox’ Blocked Algorithm

- Fox’ block matrix multiply with \(s \times s \) blocks of size \(m \times m \) where \(m = n/s \)

1. For \(k=0 \) to \(s-1 \) repeat 2-4:
2. For each processor row \(p \), broadcast submatrix \(A_{p,q+k} \) along processor row \(p \)
3. Compute
\[
C_{p,q} = C_{p,q} + A_{p,q+k} \times B_{p+k,q}
\]
(\(A_{p,q+k} \& B_{p+k,q} \) are local on \(p_{p,q} \))
4. Rotate \(B \) up by one processor row

\[
dn = \text{proc}\left[(p+1) \mod s\right], q] \\
up = \text{proc}\left[(p-1) \mod s\right], q] \\
B' = B_{p,q}
\]
for (\(k = 0; k < s; k++ \))
{
 \(r = (p+k) \mod s \);
 bcast \(A_{p,r} \) to \(A' \) across row \(p \)
 \(C_{p,q} = C_{p,q} + A' \times B' \);
 send \(B' \) to \(up \);
 recv \(B' \) from \(dn \);
}
Parallel Matrix Multiply: Fox’ Algorithm in MPI

```c
void Fox(GridInfo *grid, Matrix *Apq, Matrix *Bpq, Matrix *Cpq, int M)
{
  int k, r;
  int dn = (grid->p + 1) % grid->s; // The “below” and “above” processes
  int up = (grid->p + grid->s - 1) % grid->s;
  MPI_Status stat;
  Matrix Atmp[M*M];

  setzero(C);
  for (k = 0; k < grid->s; k++)
  {
    r = (grid->p + k) % grid->s;
    if (r == grid->q)
    {
      MPI_Bcast(Apq, M*M, MPI_DOUBLE, r, grid->row);
      matmul(Apq, Bpq, Cpq, M);
    }
    else
    {
      MPI_Bcast(Atmp, M*M, MPI_DOUBLE, r, grid->row);
      matmul(Atmp, Bpq, Cpq, M);
    }
    MPI_Sendrecv_replace(Bpq, M*M, MPI_DOUBLE, up, 0, dn, 0, grid->col, &stat);
  }
}
```

Row and column communicators (these are relative to each process)
Parallel Matrix Multiply:
Fox’ Algorithm in MPI (cont’d)

typedef struct GridInfo
{
 int s; \hfill The s\times s processor grid
 int p, q; \hfill Position (p,q) of the process on the grid
 MPI_Comm row, col; \hfill Row and column communicators
} GridInfo;

void setup(GridInfo *grid)
{
 MPI_Comm comm;
 int numproc, rank, dim[2], wrap[2], coord[2], freecoord[2];

 MPI_Comm_size(MPI_COMM_WORLD, &numproc);
 grid->s = (int)sqrt(numproc);

 dim[0] = dim[1] = grid->s;
 wrap[0] = wrap[1] = 1;

 MPI_Cart_create(MPI_COMM_WORLD, 2, dim, wrap, 1, &comm);
 MPI_Comm_rank(comm, &rank);
 MPI_Cart_coords(comm, rank, 2, coord);
 grid->p = coord[0];
 grid->q = coord[1];
...

Number of processes should be perfect square

Setup 2 by 2 Cartesian grid

Find process’ location on the grid
Parallel Matrix Multiply:
Fox’ Algorithm in MPI (cont’d)

typedef struct GridInfo
{
 int s; \hspace{1cm} \text{The } s \times s \text{ processor grid}
 int p, q; \hspace{1cm} \text{Position } (p,q) \text{ of the process on the grid}
 MPI_Comm row, col; \hspace{1cm} \text{Row and column communicators}
} GridInfo;

void setup(GridInfo *grid)
{
 ...
 freecoord[0] = 0;
 freecoord[1] = 1;
 MPI_Cart_sub(comm, freecoord, &grid->row);

 freecoord[0] = 1;
 freecoord[1] = 0;
 MPI_Cart_sub(comm, freecoord, &grid->col);
}
Parallel Iterative Solver:
Jacobi Method

\[x_i^k = \frac{1}{a_{ii}} \left[b_i - \sum_{j \neq i} a_{ij} x_j^{k-1} \right] \]

for (i = 0; i < m; i++)
 \quad \text{x}_p[i] = b_p[i];

\{
 allGather x_p[0...m-1] into xold[0...n-1];
 for (i = 0; i < m; i++)
 \{
 \text{x}_p[i] = b_p[i];
 for (j = 0; j < n; j++)
 \quad \text{if} (j \neq p*m+i)
 \quad \quad \text{x}_p[i] = \text{x}_p[i] - A_p[i,j]*xold[j];
 \quad \text{x}_p[i] = \text{x}_p[i]/A_p[i,i];
 \}
\} while (...);
Parallel Iterative Solver:
Jacobi Method in MPI

void Jacobi(Matrix *Ap, Vector *bp, Vector *xp, int N, int M)
{
 Vector xold[N];
 int i, j, p;

 MPI_Comm_rank(MPI_COMM_WORLD, &p);
 for (i = 0; i < M; i++)
 xp[i] = bp[i];
 do
 {
 MPI_Allgather(xp, M, MPI_DOUBLE, xold, M, MPI_DOUBLE, MPI_COMM_WORLD);
 for (i = 0; i < M; i++)
 {
 xp[i] = bp[i];
 for (j = 0; j < p*M+i; j++)
 xp[i] = xp[i] - Ap[i][j]*xold[j];
 for (j = p*M+i+1; j < N; j++)
 xp[i] = xp[i] - Ap[i][j]*xold[j];
 xp[i] = xp[i]/Ap[i][i];
 }
 } while (...);
}
Heat Distribution Problem: Parallel Jacobi Iteration

1. Distribute $n \times n$ matrix h block-wise by rows into local h_p
2. Extend local h_p with additional top and bottom rows to form “halos” (ghost cells), each block has size $m \times n$, where $m = (n-2)/P + 2$
3. Repeat 4-5 until convergence:
4. Exchange rows with neighbor processors to update halo rows
5. Compute h_{new_p}
6. Assign h_{new_p} to $h_p
Heat Distribution Problem in MPI (version 1)

```c
void HDStep(Matrix *hp, int N, int M)
{
    int i, j;
    Matrix hnew[M*N];
    MPI_Status s;
    if (p % 2 == 0 && p < P-1)
        MPI_Sendrecv(hp[M-2], N, MPI_FLOAT, p+1, 0,
                     hp[M-1], N, MPI_FLOAT, p+1, 1, MPI_COMM_WORLD, &s);
    else
        MPI_Sendrecv(hp[1], N, MPI_FLOAT, p-1, 1,
                     hp[0], N, MPI_FLOAT, p-1, 0, MPI_COMM_WORLD, &s);
    if (p % 2 == 1 && p < P-1)
        MPI_Sendrecv(hp[M-2], N, MPI_FLOAT, p+1, 2,
                     hp[M-1], N, MPI_FLOAT, p+1, 3, MPI_COMM_WORLD, &s);
    else if (p > 0)
        MPI_Sendrecv(hp[1], N, MPI_FLOAT, p-1, 3,
                     hp[0], N, MPI_FLOAT, p-1, 2, MPI_COMM_WORLD, &s);
    for (i = 1; i < M-1; i++)
        for (j = 1; j < N-1; j++)
            hnew[i][j] = 0.25*(hp[i-1][j]+hp[i+1][j]+hp[i][j-1]+hp[i][j+1]);
    for (i = 1; i < M-1; i++)
        for (j = 1; j < N-1; j++)
            hp[i][j] = hnew[i][j];
}
```

"even" processor exchanges bottom rows with "odd" processor top rows

"odd" processor exchanges bottom rows with "even" processor top rows
Heat Distribution Problem in MPI (version 2)

```c
void HDStep(Matrix *hp, int N, int M)
{
    int i, j;
    Matrix hnew[M*N];
    MPI_Status s;
    if (p > 0 && < P-1)
    {
        MPI_Sendrecv(hp[M-2], N, MPI_FLOAT, p+1, 0,
                     hp[0], N, MPI_FLOAT, p-1, 0, MPI_COMM_WORLD, &s);
        MPI_Sendrecv(hp[1], N, MPI_FLOAT, p-1, 1,
                     hp[M-1], N, MPI_FLOAT, p+1, 1, MPI_COMM_WORLD, &s);
    }
    else if (p == 0)
    {
        MPI_Sendrecv(hp[M-2], N, MPI_FLOAT, p+1, 0,
                     hp[M-1], N, MPI_FLOAT, p+1, 1, MPI_COMM_WORLD, &s);
    }
    else
    {
        MPI_Sendrecv(hp[1], N, MPI_FLOAT, p-1, 1,
                     hp[0], N, MPI_FLOAT, p-1, 0, MPI_COMM_WORLD, &s);
        for (i = 1; i < M-1; i++)
            for (j = 1; j < N-1; j++)
                hnew[i][j] = 0.25*(hp[i-1][j]+hp[i+1][j]+hp[i][j-1]+hp[i][j+1]);
        for (i = 1; i < M-1; i++)
            for (j = 1; j < N-1; j++)
                hp[i][j] = hnew[i][j];
    }
```
Heat Distribution Problem in MPI (version 3)

```c
void HDStep(Matrix *hp, int N, int M, int step)
{
    int i, j;
    int dntag = 2*step;  // Tag for “down” sends
    int uptag = 2*step + 1;  // Tag for “up” sends
    Matrix hnew[M*N];
    MPI_Request sndreq[2], rcvreq[2];
    MPI_Status stat[2];

    if (p < P-1) {
        MPI_Isend(hp[M-2], N, MPI_FLOAT, p+1, dntag, MPI_COMM_WORLD, &sndreq[0]);
        MPI_Irecv(hp[M-1], N, MPI_FLOAT, p+1, uptag, MPI_COMM_WORLD, &rcvreq[0]);
    }
    if (p > 0) {
        MPI_Isend(hp[1], N, MPI_FLOAT, p-1, uptag, MPI_COMM_WORLD, &sndreq[1]);
        MPI_Irecv(hp[0], N, MPI_FLOAT, p-1, dntag, MPI_COMM_WORLD, &rcvreq[1]);
    }

    for (i = 2; i < M-2; i++)
        for (j = 1; j < N-1; j++)
            hnew[i][j] = 0.25*(hp[i-1][j]+hp[i+1][j]+hp[i][j-1]+hp[i][j+1]);
...  // Compute only interior points not on interior top row and not on bottom row
```

Tag for “down” sends

Tag for “up” sends

Compute only interior points not on interior top row and not on bottom row
void HDStep(Matrix *hp, int N, int M, int step)
{
...
if (p == 0)
 MPI_Wait(&rcvreq[0], stat);
else if (p == P-1)
 MPI_Wait(&rcvreq[1], stat);
else
 MPI_Waitall(2, rcvreq, stat);
for (j = 1; j < N-1; j++)
{ hnew[1][j] = 0.25*(hp[0][j] +hp[2][j] +hp[1][j-1] +hp[1][j+1]);
}
if (p == 0)
 MPI_Wait(&sndreq[0], stat);
else if (p == P-1)
 MPI_Wait(&sndreq[1], stat);
else
 MPI_Waitall(2, sndreq, stat);
for (i = 1; i < M-1; i++)
 for (j = 1; j < N-1; j++)
 hp[i][j] = hnew[i][j];
}
Further Reading

- [PP2] pages 340-365