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ABSTRACT
This paper presents specialized code generation techniques
and runtime optimizations for developing light-weight XML
Web services for embedded devices. The optimizations are
implemented in the gSOAP Web services development envi-
ronment for C and C++. The system supports the industry-
standard XML-based Web services protocols that are in-
tended to deliver universal access to any networked appli-
cation that supports XML. With the standardization of the
Web services protocols and the availability of toolkits such as
gSOAP for developing embedded Web services, new oppor-
tunities emerge to integrate embedded systems into larger
frameworks of interconnected applications and systems ac-
cessing dynamic resources on the Web ranging from hand-
held and embedded devices to databases, clusters, and Grids.
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1. INTRODUCTION
Recent developments in Internet protocol standardization

have led to the publication of a collection of XML-based pro-
tocols that are meant to enhance cross-language and cross-
platform interoperability, thereby encouraging systems in-
tegration. More specifically, a Web service, as defined by
the W3C Web Services Architecture Working Group, is “a
software system identified by a URI, whose public interfaces
and bindings are defined and described using XML. Its def-
inition can be discovered by other software systems. These
systems may then interact with the Web service in a man-
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ner prescribed by its definition, using XML based messages
conveyed by Internet protocols.” [22]. This definition is often
refined to the use of the Web Services Description Language
(WSDL) [23] for describing and advertising Web services,
SOAP [4] as the XML-based message packaging format, and
HTTP (HyperText Transport Protocol) [12] as the transport
protocol.

The ubiquity of HTTP and XML enables a high-level of
transport interoperability. The internal logic of an applica-
tion can be securely exposed to the Internet or local network
as a service [20]. Such networked applications can actively
participate in various forms of Internet transactions, rang-
ing from simple information services, such as checking flight
status information with a cell phone, to more elaborate ap-
plications such as Google searches [10], the controlling of
“smart” buildings [17], and Grid systems [2, 9] for collabo-
rative scientific research.

However, the complexity and verbosity of XML Web ser-
vices protocols creates a whole new set of design tradeoffs
and issues for developing Web services applications for em-
bedded systems. Embedded systems rarely have enough
memory and processing power to run an HTTP Web server,
SOAP engine, and XML parser. The verbosity of XML and
HTTP increases RAM usage, bandwidth requirements, and
operating costs. Current Web services implementations do
not adequately address these issues [5, 6, 19].

This paper presents specialized code generation techniques
and runtime optimizations for developing light-weight XML
Web services for embedded devices. The techniques aim
to reduce memory, network, and processing requirements
of SOAP/XML over HTTP. The optimizations are imple-
mented in the gSOAP [21] Web services development envi-
ronment for C and C++, available from SourceForge and
included in the IBM alphaWorks Web Services Tool Kit for
Mobile Devices (WSTKMD) [11].

The remainder of this paper is organized as follows. Sec-
tion 2 presents a brief overview of the most widely used
systems and protocols for application-level communications.
Several Web services implementations for embedded systems
are also presented. Section 3 introduces Web services basics.
Section 4 presents the gSOAP Web services toolkit followed
in Section 5 by the presentation of the optimizations and
code generation methods. The paper is summarized with
results in Section 6 and conclusions in Section 7.

2. RELATED WORK
Several systems and protocols have been proposed and

developed since the early 1980s for inter-application data



exchange. This section briefly reviews some of the most
widely used systems and protocols, and presents Web ser-
vices development toolkits for embedded systems.

Sun Microsystems’ RPC (Remote Procedure Call) com-
piler generates code that is used by client and server ap-
plications to exchange data over a network. The runtime
RPC parameter encoding and decoding mechanism is re-
ferred to as parameter marshaling and demarshaling, respec-
tively. The marshaling routines convert application data
into XDR (External Data Representation) [13] for transmis-
sion. XDR does not support pointer-based data structures,
such as graphs. It only describes the most commonly used
data-types of high-level languages such as C so that applica-
tions written in these languages will be able to communicate.

CORBA is a platform-independent architecture for ORB
(Object Request Brokerage) [15]. CORBA uses the IIOP
(Internet Inter ORB Protocol) for data transmission be-
tween CORBA applications. CORBA’s IIOP supports a
wide variety of data types that can be specified in the IDL
(Interface Description Language). CORBA is a heavy weight
product and not very well suitable for embedded devices.

Microsoft’s DCOM protocol is similar to IIOP and en-
ables COM objects on different Windows-based systems to
communicate. Although DCOM is a platform-independent
protocol, it is mainly used within Windows environments.

Sun Microsystems’ Java RMI (Remote Method Invoca-
tion) automatically marshals objects for communication be-
tween Java applications. There is no limit on the type of
data objects that can be exchanged, since Java has built-in
data serialization capabilities. Java supports the serializa-
tion of arbitrarily complex data structures such as graphs.

A large number of Web service implementations for var-
ious languages are available. A few of these support em-
bedded systems. Note that the “standard” embedded Web
servers [3, 18] do not support Web services standards but
merely offer an HTTP interface.

The following light-weight Web services implementations
are suitable for embedded systems. Most implementations
include an (embedded) HTTP Web server. They also typ-
ically offer a library-based API (Application Programming
Interface) for SOAP/XML packaging. SOAP/XML mes-
sages are constructed using a C++ or Java class library.

The micro-services framework [16] considers a subset of
the Web services protocols, with a scaled down Web server
and SOAP library with limited support for SOAP/XML
data types. Only a subset of the SOAP/XML primitive
types and compound types is supported.

The eSOAP [8] toolkit for C++ and Java, developed by
EXOR International, is a proprietary SOAP implementation
for embedded systems with an API based on a class library.

The kSOAP toolkit [7] for Java, developed by Enhydra,
runs on embedded devices that support Sun’s KVM (Java
2 Micro Edition). The kSOAP toolkit offers a class library
for SOAP/XML packaging.

Microsoft .NET compact framework provides a platform-
dependent Web services framework for embedded devices.
The development of C# Web services is integrated in the
Microsoft Visual Studio .NET compilation framework and
therefore automated. The .NET framework supports seri-
alization of data objects managed by the CLR (Common
Language Runtime). The .NET framework includes the IIS
(Internet Information Services) Web server to deploy .NET
applications as Web services on the Internet.

The IBM alphaWorks Web Services Tool Kit for Mobile
Devices (WSTKMD) for Java, C, and C++ includes the
kSOAP and gSOAP toolkits. The gSOAP toolkit [20, 21]
is the only Web services development environment that in-
cludes a fully automated RPC compiler supporting pure
C and C++ Web services applications. The goal of the
gSOAP project is to develop an easy-to-use portable Web
services software development toolkit that fully automates
the development and deployment cycle of efficient C/C++
Web services. The gSOAP compiler selectively generates
code to limit application code size and to reduce run-time
memory, network, and processing requirements of Web ser-
vice applications. The gSOAP 2.3 release is WSDL1.1 and
SOAP1.1/1.2 compliant and includes an HTTP1.0/1.1 Web
server, an XML parser/generator, an RPC compiler, and
a WSDL importer (compiler preprocessor). gSOAP 2.3 is
portable to most platforms, including Linux, Unix (e.g. AIX,
BSD, HP-UX, Irix, Solaris), Cygwin, Windows, Mac OS X,
Palm (OS 3,4 and 5), Pocket PC, Symbian, and cell phones.
The gSOAP toolkit will be further discussed in Section 4.

3. WEB SERVICES BASICS
Figure 1 shows the layered Web services architecture model.

The transport layer is at the bottom of the model. The
firewall-friendly HTTP (HyperText Transfer Protocol)
and secure HTTPS are used to invoke Web services
with HTTP POST request-response message exchanges.

The packaging layer uses the XML-based SOAP protocol.
Figure 2 depicts a SOAP 1.1 message transported with
HTTP/1.1. A SOAP message consists of an Enve-
lope root element, an optional SOAP Header to encode
meta-information (such as authentication data, signa-
tures, routing points, and transaction tokens), encod-
ing rules defining how messages should be processed,
and an RPC representation in the SOAP Body that
defines how to represent remote procedure calls and
responses, such as the RPC method name and its pa-
rameters. The SOAP encoding style uses both scalar
types (strings, integers, floats, and so on) and com-
pound types (structures and arrays) that can be used
to carry application data. The values of these types
appear as XML elements within the method parame-
ters of the SOAP Body. A SOAP Fault element (not
shown) is used to carry error information to transfer
remote exceptions.

HTTP/HTTPS, SMTP, FTP

SOAP

XML

Web services and WSDL

UDDI

Transport layer

Packaging layer

Information layer

Discovery layer

Service layer

Figure 1: Layered Architecture Model



POST /Service HTTP/1.1
Host: www.mydomain.com
Content-Type: text/xml
Content-Length: NNNN
SOAPAction: Service#method

<s:Envelope ...>

<s:Header>

</s:Header>

</s:Envelope>

...

<s:Body>

</s:Body>

<m:method ...>

</m:method>

<param1>...</param1>
<param2>...</param2>
...

SOAP Header

HTTP Header

SOAP Body
SOAP Envelope

Figure 2: SOAP Message Structure

The information layer carries the XML-formatted SOAP
message. The process of wrapping application data
in XML is called XML serialization. The mechanisms
of XML serialization consists of XML encoding to pre-
pare outbound messages for transmission and XML de-
coding upon receiving inbound messages. To establish
a SOAP RPC request-response message exchange, a
client invokes a local proxy object, see Figure 3. The
proxy’s RPC stub routine marshals the function pa-
rameters in XML, wraps it in a SOAP envelope, and
transmits it over the network to be handled remotely,
where the reverse process takes place to unwrap the
parameters and return a response.

The services layer provides meta-data on the interface to
Web services as defined by WSDL. WSDL describes
a SOAP/XML Web service and promotes reusability
by defining the service functionality and access mech-
anisms, similar to CORBA’s IDL for IIOP.

The discovery layer offers a way to publish information
about web services, as well as provide a mechanism
to discover what web services are available through
the Universal Description, Discovery, and Integration
(UDDI) specification. UDDI is a yellow pages service
provider for service registration and lookup.

4. GSOAP
This section gives a brief overview of the gSOAP project.

The specialized code generation techniques and runtime op-
timizations for developing light-weight XML Web services
for embedded devices are discussed in Section 5.

4.1 Design Characteristics
The gSOAP Web services toolkit for C and C++ is an

open-source development environment for Web services. Im-
portant design characteristics include:

• Based on established compiler technologies. The RPC
compiler selectively generates code for XML serial-
ization of an application’s native C/C++ application
data types, including graph-based data structures. This
simplifies the development of Web services from a user’s
point of view [21].

• Light weight, because the RPC compiler generates com-
pact code [20] and the runtime environment of the
SOAP/XML engine has a small memory footprint.

Client proxy

RPC stub RPC skeleton

Server object

SOAP/XML transport

marshal demarshal marshal demarshal

request requestresponse response

Figure 3: Remote Procedure Calling

• Support for pure C. This is essential for many embed-
ded systems kernels and systems-oriented applications
developed in C.

• Enhanced efficiency using XML predictive pull pars-
ing, streaming media techniques, and high-performance
latency hiding methods. The performance of gSOAP
Web services can surpass the performance of Java RMI
and IIOP [19].

• Support for a flexible transport layer supporting syn-
chronous and asynchronous messaging. The communi-
cations module implements several callback functions
that can be used to replace the standard TCP/IP socket
and/or HTTP communications.

• Two-level interface. A service can be defined in WSDL
or a gSOAP header file with standard C/C++ syntax
for defining services and service parameter data.

• Full support for the basic set of Web services protocols
with provisions for building stand-alone (embedded)
HTTP/HTTPS Web services.

4.2 Implementation
Figure 4 depicts the development and deployment stages

of a gSOAP Web service application. A service application
must implement a set of SOAP-compliant RPC functions
to expose the service on the Web for remote invocation.
This aspect is fully automated. The gSOAP service func-
tion interface definitions are specified in a standard C/C++
header file. The service can also be specified with a WSDL
document (shaded), which is preprocessed with the gSOAP
WSDL importer to produce a header file. This header file
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Figure 4: Development and Deployment of a Service
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Figure 5: Development and Deployment of a Client

contains the service function prototypes and any additional
data type declarations for the function parameters. The
header file is compiled with the gSOAP compiler to produce
the service RPC skeleton and data type serialization codes.
These codes are compiled and linked with the service appli-
cation to expose the application on the Internet as a Web
service. The gSOAP compiler generates a WSDL document
describing the service in detail, such as the endpoint location
of the service, the remote methods, and the type of parame-
ter data used. This WSDL document can be registered and
used by client applications to invoke the service.

Figure 5 depicts the development and deployment stages
of a gSOAP client application. The gSOAP WSDL importer
and gSOAP compiler are used to parse the WSDL service
definitions to create the RPC stub code and XML serial-
ization routines for parameter (de)marshaling by the stub.
Optionally, the client stub can be created from the gSOAP
header file service definitions. The client application is com-
piled and linked with the RPC stub and gSOAP communi-
cations module to invoke SOAP/XML service functions over
the Internet or local network.

4.3 Example
Consider the service interface definitions shown in Fig-

ure 6. The first part of the interface defines three XML
Web service-specific information items. The gSOAP direc-
tive at the first line defines the service name “sensor” and as-
sociates the service with an XML namespace qualifier “ns”.
The namespace qualifier is used as a reference to the service
throughout the header file. The second line associates an
XML namespace with the service. The third line defines the
endpoint for the service, which is the URL that points to
the Web service that accepts the SOAP request over HTTP.
The service application can be installed in a HTTP Web
server or it can be run as a stand-alone gSOAP Web service
on a TCP/IP port specified with the endpoint URL.

The sensor response to a poll request consists of a status
value, the sensor’s most recent sample time, and the sen-
sor’s registered temperature. The “tm” structure defined in
<time.h> is replicated in the header file to enable XML seri-
alization. The “volatile” qualifier indicates that this struc-
ture provides (part of) a view of an external type rather
than being defined by the header file it is contained in. In
this way, the “tm” structure can be serialized even when
the fields it contains varies between platforms (the fields
shown in the figure are all mandatory). Each “tm” struct
field value will be serialized as an XML element within the
SOAP/XML sensor response.

//gsoap ns service name: sensor
//gsoap ns service namespace: http://.../sensor.xsd
//gsoap ns service endpoint: http://.../sensor
struct ns sensorResponse
{

enum sensorStatus { INACTIVE, ACTIVE, FAILURE } status;
struct tm *sampleTime;
double sampleTemp;

};
volatile struct tm
{

int tm sec; /* seconds (0 - 60) */
int tm min; /* minutes (0 - 59) */
int tm hour; /* hours (0 - 23) */
int tm mday; /* day of month (1 - 31) */
int tm mon; /* month of year (0 - 11) */
int tm year; /* year - 1900 */
int tm wday; /* day of week (Sunday = 0) */
int tm yday; /* day of year (0 - 365) */
int tm isdst; /* is summer time in effect? */
char *tm zone; /* abbreviation of timezone name */
long tm gmtoff; /* offset from UTC in seconds */

};
int ns sensor(char *id, struct ns sensorResponse *data);

Figure 6: Example Service Interface

The last line defines the service RPC function. This func-
tion is exposed as a SOAP RPC service method on the Inter-
net. By convention, all but the last parameters of a service
function are input parameters. The last parameter is the
sensor service response parameter which must be passed by
pointer in C or by reference in C++.

The remote “sensor” function is shown in Figure 7. The
service function is part of the service application. The ser-
vice application is compiled and linked with the code gen-
erated by the gSOAP compiler for the service interface def-
initions in the header file that was shown in Figure 6. The
“soap” struct contains the gSOAP environment, which is
used to make the code reentrant. The sensor “data” struc-
ture is populated. The “localtime r” <time.h> function re-
quires a temporary output buffer. This buffer is allocated
with the gSOAP “soap malloc” function, which returns stor-
age space that is automatically deallocated after the service
responded to the client.

The code generated by the gSOAP compiler is linked with
the application code shown in Figure 7 to build the service.
The application is also linked with the gSOAP runtime en-
gine and Web server to enable the service to run indepen-
dently (e.g. on a device). The gSOAP HTTP/1.1 server sup-
ports keep-alive, chunking, compression, cookie-based state
management, authentication, and SSL encryption.

int ns sensor(struct soap *soap, char *id, struct ns sensorResponse
*data)
{ time t now = time(NULL); /* assume sensor sample time is now */

data->sampleTime = localtime r(&now, soap malloc(soap,
sizeof(struct tm)));

data->status = ...; /* INACTIVE, ACTIVE, or FAILURE */
data->sampleTemp = ...; /* temperature readout */
return SOAP OK;

}

Figure 7: Example Service Function



struct soap *soap = soap new();
struct ns sensorResponse data;
if (soap call ns sensor(soap, 0, 0, ”ID”, &data) == SOAP OK)
{

... = data.status;

... = data.sampleTime;

... = data.sampleTemp;
}
else

/* a (remote) fault occurred */

Figure 8: Example Invocation

A gSOAP client is build in a similar manner. Consider for
example the client-side invocation of a Web service shown
in Figure 8. A client application invokes the service using
the gSOAP compiler-generated “soap call ns sensor” func-
tion (derived from a WSDL or a gSOAP header file), which
invokes the service through a stub routine that is compiled
and linked with the client application. The stub automati-
cally marshals and demarshals the “id” and “data” parame-
ters using the gSOAP compiler-generated XML serialization
code. The “soap new” function constructs a new runtime
environment for the gSOAP engine.

5. GSOAP OPTIMIZATIONS
Additional features were implemented in gSOAP 2.0 and

later to limit memory usage, processing time, and band-
width requirements. These enhancements include improved
portability, compact compiler-based code generation meth-
ods, and reduced memory overhead with novel streaming
techniques for efficient messaging.

5.1 Improved Portability
The gSOAP toolkit supports embedded Linux and WinCE.

Additional efforts were made to port gSOAP to the Palm
(OS 3,4 and 5), Pocket PC, Symbian, and cell phones. The
Palm OS 3 and 4 restrict the code layout by enforcing 64K
segments. The gSOAP runtime library (stdsoap2.c) that
contains an embedded HTTP Web server and XML parser
was split into two parts of about 40K each. The RPC-
compiler generated code is placed in a separate segment.

5.2 XML Serialization Optimizations
The gSOAP compiler generates code to serialize native

C and C++ data structures, including primitive types, enu-
merations, structs, classes (with support for polymorphism),
pointer-based structures such as graphs, dynamic and fixed-
size arrays, and STL containers. gSOAP also provides fea-
tures to serialize data in customized XML formats. The
only types that gSOAP cannot serialize are void pointers,
unions, and some STL types. Dynamic arrays are supported
through a specific declaration that requires a struct or class
with a pointer field to point to the first element in the array
and an array size field. In this way, the runtime gSOAP
engine can determine array location and size. The gSOAP
engine does not augment data types with meta information
such as runtime type information. Further improvements
were made to support the serialization of application-specific
data, fixed library-based data types (using the “volatile”
qualifier as was illustrated in Section 4.3), and even existing
data stored in ROM.

The optimized XML serialization method relies on the
well-formed properties of XML. Because XML is a context-
free language defined by XML DTDs (Document Type Def-
initions) or XML schemas, which define grammar-like rules
for parsing and validating XML content, XML can be parsed
with a parser that is derived from these definitions. Tools
such Bison and Yacc can in principle be used to construct
an optimized parser from the XML DTD/schema grammar.
However, a light-weight recursive descent parser suffices, be-
cause XML (as defined by DTDs or schemas) is an LL(1)
language. A recursive descent parser is a predictive parser
that rejects input when the input does not correspond to a
fixed set of tokens that are expected on the input based on
the LL(1) properties of the language [1].

The gSOAP RPC compiler generates predictive parsers
for XML. The generated code is a predictive parser for the
specific XML contents associated with a Web service in-
vocation. The XML content associated with a Web ser-
vice invocation is defined in the XML schema types part of
a WSDL service definition1. The predictive parser gener-
ated by the gSOAP RPC compiler also converts XML into
C/C++ application data (similar to the semantic rules of an
augmented grammar). This decoding constructs application
data without requiring an elaborate post-processing phase
for data conversion after decoding, except that forward ref-
erences in XML have to be resolved later by back-patching
pointers in graph-like data structures [20]. The recursion of
the parser is carefully implemented by limiting the amount
of stack-allocated data. A gSOAP environment is passed to
each function call. The environment ensures that the code
is reentrant and provides temporaries such as buffers that
can be re-used through the recursive calls.

The optimized serialization algorithm for XML encoding
uses two phases. The first phase determines which data
components belong to the data structure and which pointers
are used to reference them. This phase is only relevant for
pointer-based data structures. The second phase emits the
XML encoded form of the entire data structure, with all
sub-components of the structure serialized recursively.

Phase 1: traverse the data structure graph by visiting each
node and by following the pointer references to all
sub-nodes. For each pointer that was followed to a
sub-node, store the pointer’s target address in a hash
table together with an identification of the data type
referenced by the pointer. The hash table key is a
triple of <PtrLoc,PtrType,PtrSize>, where PtrLoc is
the pointer’s target address, PtrType is the type of
data referenced by the pointer, and PtrSize is the size
of the object in bytes, which is statically determined
with “sizeof”. The PtrSize of dynamic arrays is com-
puted from the array size and element size, where dy-
namic arrays are defined with a struct/class contain-
ing a pointer field and size field. Node pointers are
only followed through to visit sub-nodes when the key
<PtrLoc,PtrType,PtrSize> is not already contained in
the hash table. When the key is already contained
in the hash table, then the hash table entry is marked
RefType=multi to indicate that a multi-referenced sub-
node has been found. Entries in the hash table are
marked RefType=embedded when a data element that

1gSOAP can also parse arbitrary XML documents with the
XML DOM parser that is included in the gSOAP 2.3 release.
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is pointed to is embedded in larger structure, such as
a field of a struct or class, or an element of an array.
It is noteworthy to mention that a hash table entry is
created at run time only for each pointer in a pointer-
based data structure. No additional space is required
to serialize non-pointer-based structures.

Phase 2: emit the XML encoded data by visiting each
node in the data structure graph and by following the
pointer references to the sub-nodes for recursive seri-
alization. Multi-referenced nodes (those whose hash
table entry is marked RefType=multi) are serialized
separately, as required by SOAP 1.1 encoding. The se-
rialization settings can be changed to override SOAP
1.1 encoding to serialize data in a more generic XML
format, such as SOAP 1.2 encoding. In that case, also
special care is taken to serialize data elements that
are referenced by pointers and which are embedded
within structs or arrays (that is, the hash table entry
for these elements are marked RefType=embedded).
The embedded property of data elements affects the
id-href element cross referencing produced in the en-
coded form of XML. The cross referencing produced
ensures that the receiving side of the XML message
can accurately reconstruct the serialized data struc-
ture from the XML content alone.

The two-phase serialization is illustrated with the example
data structure shown in Figure 9. The structure consists of
three nodes, two structs located at addresses “A” and “B”,
and a node that contains a single integer value stored at
address “C”. The data type declaration of the node struct
with the “val”, “ptr”, and “next” fields is shown in Figure 9.

The serialization starts at the root struct stored at loca-
tion “A”. The first phase consists of a pass over the entire
data structure to collect the properties of the pointers used
in the data structure graph and to store these in the hash
table:

ID PtrLoc PtrType PtrSize PtrCount RefType
1 A Node 12 > 1 multi
2 B int 4 1 embedded
3 B Node 12 1 single
4 C int 4 1 single

Each entry has a unique index ID, the hash table key which
is the triple <PtrLoc,PtrType,PtrSize> with target pointer
address PtrLoc and target type pointed to PtrType, an in-
dication of the number of references made to this target ad-
dress, PtrCount, which is either ”1” or ”> 1”, and the type
of the reference RefType, which is either “single”, “multi”,
or “embedded”.

<Node id=" 1">
<val>123</val>
<ptr href="# 2"/>
<next>

<val id=" 2">456</val>
<ptr>789</ptr>
<next href="# 1"/>

</next>
</Node>

Figure 10: Serialized XML Output of the Data
Structure Graph

The serialized XML output is shown in Figure 10. The
root node is serialized with “id=" 1"”, because it is multi-
referenced. The second struct at location “B” is serialized
in XML as a nested element of the first node struct, because
it has only a single reference. Note that the “ptr” field in
the first struct points to the “val” field in the second struct,
which is at location “B”. Because the “val” field is embed-
ded within a struct, the “ptr” is serialized with a forward
pointing “href="# 2"” attribute. This ensures that the re-
ceiving side can decode the XML and backpatch the “ptr”
pointer field to point to the “val” field after the contents
of the second struct are decoded that contains the value of
“val”. The “ptr” field in the second struct points to a single-
referenced integer located at “C”. The XML serialized value
is placed directly in an “ptr” element without an “href” at-
tribute, because it is a single reference. The SOAP encoding
style can be used with gSOAP to produce SOAP compliant
XML, which requires the two multi-referenced elements to
be placed in a separate set of elements.

The gSOAP compiler-generated predictive parser decodes
the contents to the original data structure graph. The parser
takes special care in handling the XML “id” and “href”
attributes, which resemble references. When the data struc-
ture is (re)constructed, unresolved references are kept in a
hash table. When the target objects of the references have
been parsed and the data is allocated in memory, the un-
resolved references are replaced by pointers. In effect, the
unresolved pointers in the Node structures are back-patched
with pointer values to link the separate parts of the (cyclic)
graph structure together.

XML parsing is further optimized using look-aside buffers
to store XML attribute names with their corresponding val-
ues. The look-aside buffers ensure that dynamic allocation is
minimized while parsing XML attributes for decoding. XML
element tag names are buffered in a single pre-allocated
buffer to conserve memory.

5.3 XML Streaming
A recent study on XML Web services with mobile devices

on wireless networks [14] concluded that SOAP/XML suf-
fers from a performance penalty and is slower compared to
IIOP and Java RMI. However, the SOAP/XML implemen-
tations considered by the authors in their study are subop-
timal. Implementations that utilize XML DOM (Document
Object Model) for example, must construct a DOM tree for
an outbound XML message. Likewise, an XML DOM parser
is used to construct the DOM tree of an inbound message.
The application data can only be extracted from the DOM
tree after the entire message has been received, i.e the op-
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Figure 11: HTTP Chunking and XML Streaming

posite of streaming. Therefore, the use of an XML DOM or
another intermediate data representation can incur a signif-
icant overhead in realistic Web service invocation scenarios.

The gSOAP communications module was augmented to
support HTTP chunking and additional XML pull parsing
techniques to achieve streaming. With chunking, the HTTP
header (Figure 2) does not need to indicate the message con-
tent length (which requires the buffering of the entire mes-
sage to determine its length2), but indicates that the body
of the HTTP message is chunked in blocks. The encoding
and decoding of application data in XML is supported with
gSOAP’s XML serializers that are generated by the gSOAP
compiler. These serializers directly operate on application
data to transmit the data in XML and to parse XML and
convert it back into application data without any interme-
diate forms of XML such as a DOM tree or SOAP data
structure. Therefore, XML is not used as a persistent doc-
ument format. It simply forms the essential standardized
format to exchange platform-independent information and
the proper optimization techniques such as streaming can
greatly enhance the performance of XML communications.

Figure 11 illustrates the streaming of SOAP/XML request
messages from a client to a server. The encoding of appli-
cation data to XML takes place by the gSOAP engine while
the message is transferred in chunks of XML. At the send-
ing side, each chunk is encoded and then transmitted at the
same time the next chunk is being encoded. At the receiving
side, XML messages are parsed and decoded as soon as data
arrives in a buffer. Note that the size of the data received
in this buffer does not need to correspond to the size of a
chunk, because parsing and decoding can commence as soon
as part of the buffer is filled by a receive operation.

The optimal chunk size depends on the network band-
width, processor speed, and average message length. A fast
network or processor requires a larger chunk size. A chunk
size of 32K to 64K appears to be a good choice for most desk-
top systems. Performance of single-CPU platforms degrades
significantly for a chunk size below 32K. The chunk size
should also not be too small to avoid sending small TCP/IP
packets which can severely reduce throughput. Chunk sizes
above 64K may increase the performance by an additional
10% on high-speed networks. However, chunk size will be
limited by the embedded systems’ memory constraints and
network capabilities.

5.4 Compression
The gSOAP engine was extended with runtime compres-

sion using Zlib. Compression may improve performance

2gSOAP uses a separate SOAP encoding phase to determine
the HTTP header content length, see [20] for more details

(and reduce the size of the verbose XML messages), but
software compression methods such as the Zlib library gen-
erally add a significant overhead to the message encoding
and decoding time [19]. Streaming compression with HTTP
compression methods, such as gzip, deflate, or compress,
combined together with HTTP chunking may be used to re-
duce this overhead. However, V90 modems commonly used
with dialup connections for example, already apply packet-
based compression, which eliminates the need for software
compression.

5.5 Binary Data Transfer Optimizations
To implement efficient binary data transfers, the DIME

(Direct Internet Message Encapsulation) protocol was in-
tegrated into the gSOAP transport. DIME transport at-
tachments carry binary data associated with a SOAP/XML
request or response. The DIME format results in better
performance, lower processing cost, and reduced code size
compared to MIME attachments. In addition, DIME at-
tachments can be streamed to achieve a higher throughput.
This feature allows file contents to be transmitted as an at-
tachment to a SOAP/XML request and response without
requiring the file to be resident in memory. Therefore, data
duplication is not necessary. A file is incrementally send in
chunks from disk and attachments are saved in chunks to
disk. This streaming property is very useful for small scale
systems such as mobile devices and embedded systems.

6. RESULTS
The size of a Web service application is determined by the

set of data types that the service supports. The table below
lists the code sizes for a select set of applications:

Application Code Size (KB)
gSOAP Web server and SOAP engine 77
GetQuote client (subset of features) 83
GetQuote client 85
Google API client 164
Interop A server 300
Interop B server 188
Interop C server 155

Code size was measured on a Red Hat Linux 2.4 system, run-
ning on a P3, and the applications were compiled with gcc
2.95.3 -O2. The gSOAP Web server and SOAP engine are
essential components and statically linked with the gSOAP
clients and servers. No other libraries except the standard
C library and socket library were linked with the applica-
tions. The Zlib and OpenSSL libraries were not used for
these tests. The GetQuote client application is a C pro-
gram that retrieves a stock quote from a server. The code
size of the minimal configuration and typical configuration
of GetQuote are shown. The Google API client application
is a C program that dynamically invokes the Google search
engine using the Google API [10] and retrieves the Google
search results in XML. The [24] interoperability testing site
allows Web service toolkit projects to install interoperability
servers. These servers echo various types of data structures
back to test client applications to verify compliance with the
SOAP 1.1 protocol. The interoperability class A is designed
to test an extensive set of primitive types, structs, and one
dimensional arrays. Interoperability class B is designed to
test compound types such as structs, one dimensional, and
two dimensional arrays in a number of combinations. Inter-
operability class C test the SOAP Header compliance.



The table below lists the total maximum memory foot-
print of the applications on the Linux system:

Application Malloc (KB) Footprint (KB)
GetQuote client 1.5 546
Google API client 2.4 1,004

The Malloc column lists the total amount of dynamically
allocated data. The Footprint column lists the footprint of
the application with the default stack and heap size settings
under Red Hat Linux. The Google API search was per-
formed on the string “embedded systems”. The interoper-
ability servers are multi-threaded. A multi-threaded server
processes requests simultaneous thereby increasing the foot-
print as a function of the load. Therefore, the interoper-
ability servers are not shown in the table with the footprint
statistics.

These results show that the kernel gSOAP system is small
in terms of code size and total memory footprint. Applica-
tions that include a wide variation of data types, such as the
interoperability servers. have not shown to cause the gSOAP
compiler to generate excessive code. The memory footprint
of the applications on the P3-based Linux machine shows a
reasonably sized pre-allocated stack and heap space. How-
ever, the dynamic memory allocation statistics also show
that the impact of the client applications on the memory
utilization is limited, which is a desirable property for run-
ning Web service applications on embedded systems.

7. CONCLUSIONS
The gSOAP toolkit was augmented with many new fea-

tures and optimizations to support embedded systems. The
optimizations further reduce memory requirements, network
bandwidth requirements, and processor demands to meet
the stringent constraints of embedded devices. These im-
provements include enhanced portability, new code gener-
ation methods for XML serializers, XML streaming tech-
niques, message compression, and support for efficient bi-
nary data transfers with (streaming) DIME attachments.
Results indicate that the code size and memory footprint
are small, even for client and server applications that have
to exchange relatively complex data structures.

The gSOAP system is part of a number of larger software
development packages for embedded systems, such as IBM
WSTKMD, and WindRiver and OpenWave products. The
system has been used for developing (mostly proprietary)
Web services applications for handheld devices and embed-
ded systems.
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