
Multiprocessor EDF and Deadline Monotonic Schedulability Analysis

Theodore P. Baker

Department of Computer Science
Florida State University

Tallahassee, FL 32306-4530
e-mail: baker@cs.fsu.edu

Abstract

Schedulability tests are presented for preemptive
earliest-deadline-first and deadline-monotonic schedul-
ing of periodic or sporadic real-time tasks on a single-
queue�-server system, in which the deadline of a task may
be less than or equal to the task period. These results sub-
sume and generalize several known utilization-based mul-
tiprocessor schedulability tests, and are derived via an
independent proof.

1. Introduction

This paper derives simple sufficient conditions for
schedulability of systems of periodic or sporadic tasks
in a multiprocessor preemptive scheduling environ-
ment.

In 1973 Liu and Layland[13] proved that systems of in-
dependent periodic tasks for which the relative deadline of
each task is equal to its period will be scheduled to meet
all deadlines by an preemptive earliest-deadline-first (EDF)
scheduling policy so long as total processing demand does
not exceed 100 percent of the system capacity. Besides
showing that that EDF scheduling is optimal for such task
systems, this utilization bound provides a simple and effec-
tive a priori test for EDF schedulability. In the same pa-
per Liu and Layland showed that if one is restricted to a
fixed priority per task the optimal priority assignment is
rate monotonic (RM), where tasks with shorter periods get
higher priority. Liu and Layland showed further that a set of
� periodic tasks is guaranteed to to meet deadlines on a sin-
gle processor under RM scheduling if the system utilization
is no greater than ������ � ��. This test for RM schedul-
ing and the 100% test for EDF scheduling have proven to
be very useful tests for schedulability on a single proces-
sor system.

It is well known that the Liu and Layland results break
down on multiprocessor systems[14]. Dhall and Liu[9] gave
examples of task systems for which RM and EDF schedul-

ing can fail at very low processor utilizations, essentially
leaving all but one processor idle nearly all of the time.
Reasoning from such examples, it is tempting to conjec-
ture that there is unlikely to be a useful utilization bound
test for EDF or RM scheduling, and even that these are not
good real-time scheduling policies for multiprocessor sys-
tems. However, neither conclusion is actually justified.

The ill behaving examples have two kinds of tasks: tasks
with a high ratio of compute time to deadline, and tasks with
a low ratio of compute time to deadline. It is the mixing of
those two kinds of tasks that causes the problem. A policy
that segregates the heavier tasks from the lighter tasks, on
disjoint sets of CPU’s, would have no problem with this ex-
ample. Examination of further examples leads one to con-
jecture that such a segregated scheduling policy would not
miss any deadlines until a very high level of CPU utilization
is achieved, and even permits the use of simple utilization-
based schedulability tests.

In 1997, Phillips, Stein, Torng, and Wein[16] studied the
competitive performance of on-line multiprocessor schedul-
ing algorithms, including EDF and fixed priority schedul-
ing, against optimal (but infeasible) clairvoyant algorithms.
Among other things, they showed that if a set of tasks
is feasible (schedulable by any means) on � processors
of some given speed then the same task set is schedula-
ble by preemptive EDF scheduling on � processors that
are faster by a factor of �� � �

� �. Based on this paper,
several overlapping teams of authors have produced a se-
ries of schedulability tests for multiprocessor EDF and RM
scheduling[2, 6, 7, 8, 18].

We have approached the problem in a somewhat differ-
ent and more direct way, which allows for tasks to have
preperiod deadlines. This led to more general schedulabil-
ity conditions, of which the above cited schedulability tests
are special cases. The rest of this paper presents the deriva-
tion of these more general multiprocessor EDF and dead-
line monotonic (DM) shedulability conditions, and their re-
lationship to the above cited prior work.

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

This conference paper is a condensation and summary
of two technical reports, one of which deals with EDF
scheduling[4] and the other of which deals with deadline
monotonic scheduling[5]. To fit the conference page lim-
its, it refers to those reports (available via HTTP) for most
of the details of the proofs. The preliminaries apply equally
to both EDF and RM scheduling. When the two cases di-
verge, the EDF case is treated first, and in slightly more de-
tail.

2. Definition of the Problem

Suppose one is given a set of � simple independent peri-
odic tasks ��� � � � � ��, where each task �� has minimum in-
terrlease time (called period for short) ��, worst case com-
pute time ��, and relative deadline ��, where �� � �� � ��.
Each task generates a sequence of jobs, each of whose re-
lease time is separated from that of its predecessor by at
least ��. (No special assumptions are made about the first
release time of each task.) Time is represented by rational
numbers. A time interval ���� ���, �� �� ��, is said to be of
length �� � �� and contains the time values greater than or
equal to �� and less than ��.

What we call a periodic task here is sometimes called a
sporadic task. In this regard we follow Jane Liu[14], who
observed that defining periodic tasks to have interrelease
times exactly equal to the period “has led to the common
misconception that scheduling and validation algorithms
based on the periodic task model are applicable only when
every periodic task is truly periodic ... in fact most exist-
ing results remain correct as long as interrelease times of
jobs in each task are bounded from below by the period of
the task”.

Assume that the jobs of a set of periodic tasks are sched-
uled on � processors preemptively according to an EDF or
DM scheduling policy, with dynamic processor assignment.
That is, whenever there are � or fewer jobs ready they will
all be executing, and whenever there are more than � jobs
ready there will be � jobs executing, all with deadlines (ab-
solute job deadlines for EDF, and relative task deadlines for
DM) earlier than or equal to the jobs that are not execut-
ing.

Our objective is to formulate a simple test for schedu-
lability expressed in terms of the periods, deadlines, and
worst-case compute times of the tasks, such that if the test is
passed one can rest assured that no deadlines will be missed.

Our approach is to analyze what happens when a dead-
line is missed. Consider a first failure of scheduling for a
given task set, i.e., a sequence of job release times and com-
pute times consistent with the interrelease and worst-case
compute time constraints that produces a schedule with the
earliest possible missed deadline. Find the first point in this
schedule at which a deadline is missed. Let �� be the task of
a job that misses its deadline at this first point. Let � be the

release time of this job of ��. We call �� a problem task, the
job of �� released at time � a problem job, and the time in-
terval ��� �� ��� a problem window.

Definition 1 (demand) The demand of a time interval is
the total amount of computation that would need to be com-
pleted within the window for all the deadlines within the in-
terval to be met.

Definition 2 (load) The load of an interval ��� � � �� is
	
�, where 	 is the demand of the interval.

If we can find a lower bound on the load of a problem
window that is necessary for a job to miss its deadline, and
we can show that a given set of tasks could not possibly gen-
erate so much load in the problem window, that would be
sufficient to serve as a schedulability condition.

3. Lower Bound on Load

A lower bound on the load of a problem window can
be established using the following well known argument,
which is also the basis of [16]:

Since the problem job misses its deadline, the
sum of the lengths of all the time intervals in
which the problem job does not execute must ex-
ceed its slack time, �� � ��.

dkt +

kd

τk τk

��������
��������
��������
��������

����
����
����
����

������
������
������
������

t

m(− x) x

iis released misses deadline

Figure 1. All processors must be busy whenever
�� is not executing.

This situation is illustrated for � � � processors in Fig-
ure 1. The diagonally shaded rectangles indicate times dur-
ing which �� executes. The dotted rectangles indicate times
during which all � processors must be busy executing other
jobs in the demand for this interval.

Lemma 3 (lower bound on load) If 	
�� is the load of
the interval ��� �� ���, where �� �� is a missed deadline of
��, then

	

��
� ����

��
��

� �
��
��

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

Proof: Let � be the amount of time that the problem job ex-
ecutes in the interval ��� � � ���. Since �� misses its dead-
line at � � ��, we know that � � ��. A processor is never
idle while a job is waiting to execute. Therefore, during the
problem window, whenever the problem job is not execut-
ing all � processors must be busy executing other jobs with
deadlines on or before � � ��. The sum of the lengths of
all the intervals in the problem window for which all �
processors are executing other jobs belonging to the de-
mand of the interval must be at least �� � �. Summing up
the latter demand and the execution of �� itself, we have
� � ���� � �� � � 	 ��� � �� � ����. If we divide
both sides of the inequality by ��, the lemma follows.�

4. Bounding Carry-In

We now try to derive an upper bound on the load of a
window leading up to a missed deadline. If we can find such
an upper bound
 	 ��� it will follow from Lemma 3 that
the condition
 � ������������ is sufficient to guaran-
tee schedulability. The upper bound
 on ��� is the sum
of individual upper bounds
� on the load���� due to each
individual task in the window. It then follows that

�

�
�

��

���

��

�
�

��

���

�

While our first interest is in a problem window, it turns
out that one can obtain a tighter schedulability condition by
considering a well chosen downward extension ��� ���� of
a problem window, which we call a window of interest.

For any task �� that can execute in a window of inter-
est, we divide the window into three parts, which we call
the head, the body, and the tail of the window with respect
to ��, as shown in Figure 2. The contribution �� of �� to the
demand in the window of interest is the sum of the contribu-
tions of the head, the body, and the tail. To obtain an upper
bound on �� we look at each of these contributions, start-
ing with the head.

The head is the initial segment of the window up to the
earliest possible release time (if any) of �� within or beyond
the beginning of the window. More precisely, the head of the
window is the interval ��� � � min��� �� �
���, such that
there is a job of task �� that is released at time �� � � �
,
� � �� ��� � ����, � �
 � ��. We call such a job, if one
exists, the carried-in job of the window with respect to ��.
The rest of the window is the body and tail, which are for-
mally defined closer to where they are used, in Section 5.

Figure 2 shows a window with a carried-in job. The re-
lease time of the carried-in job is �� � ��
, where
 is the
offset of the release time from the beginning of the window.
If the minimum interrelease time constraint prevents any re-
leases of �� within the window, the head comprises the en-
tire window. Otherwise, the head is an initial segment of the

window. If there is no carried-in job, the head is said to be
null.

The carried-in job has two impacts on the demand in the
window:

1. It constrains the time of the first release of �� (if any)
in the window, to be no earlier than �� �� �
.

2. It may contribute to ��.

If there is a carried-in job, the contribution of the head
to �� is the residual compute time of the carried-in job at
the beginning of the window, which we call the carry-in. If
there is no carried-in job, the head makes no contribution to
��.

Definition 4 (carry-in) The carry-in of �� at time � is the
residual compute time of the last job of task �� released be-
fore �, if any, and is denoted by the symbol �.

c i

t’ t +

all m processors busy on other jobs of other tasks

m

εy x

φ
t ∆

Figure 3. Carry-in depends on competing demand.

The carry-in of a job depends on the competing demand.
The larger the value of
 the longer is the time available to
complete the carried-in job before the beginning of the win-
dow, and the smaller should be the value of �. We make this
reasoning more precise in Lemmas 5 and 9.

Lemma 5 (carry-in bound) If �� is the last release time of
�� before �,
 � �� ��, and � is the sum of the lengths of all
the intervals in ���� �� where all � processors are executing
jobs that can preempt ��, then

1. If the carry-in � of task �� at time � is nonzero, then � �
�� � �
� ��.

2. The load of the interval ���� �� is at least �� � ���
 �
�� � ���
� �.

Proof: Suppose �� has nonzero carry-in. Let � be the
amount of time that �� executes in the interval ���� �� �
�.
For example, see Figure 3. By definition, � � �� � �.
Since the job of �� does not complete in the interval, when-
ever �� is not executing during the interval all � proces-
sors must be executing other jobs that can preempt that job
of ��. This has two consequences:

1. � �
� �, and so � � �� � �
� ��

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

iT iT

c i c i

iT

t + ∆

c i

id id

headt’ t tailbody

δεφ
.

Figure 2. Window with head, body, and tail.

2. The load of the interval ���� �� � �� is at least ��� �
��� �����.

From the first observation above, we have � � ������.
Putting these two facts together gives

�� � ��� ��

�
� ��� ��

�

�
�� � ��� ��

�� �� � �

�
��

�

Since the size of the carry-in, �, of a given task depends
on the specific window and on the schedule leading up to the
beginning of the window, it seems that bounding � closely
depends on being able to restrict the window of interest.
Previous analyses of single-processor schedulability (e.g.,
[13, 3, 10, 11]) bounded carry-in to zero by considering the
busy interval leading up to a missed deadline, i.e., the inter-
val between the first time � at which a task �� misses a dead-
line and the last time before � at which there are no pending
jobs that can preempt ��. By definition, no demand that can
compete with �� is carried into the busy interval. By modi-
fying the definition of busy interval slightly, we can also ap-
ply it here.

Definition 6 (-busy) A time interval is 	-busy if its com-
bined load is at least����	��	. A downward extension of
an interval is an interval that has an earlier starting point
and shares the same endpoint. A maximal 	-busy down-
ward extension of a 	-busy interval is a downward exten-
sion of the interval that is 	-busy and has no proper down-
ward extensions that are 	-busy.

Lemma 7 (busy window) Any problem interval for task ��
has a unique maximal 	-busy downward extension for 	 �
��

��
.

Proof: Let ���� �� �
�� be any problem window for ��. By
Lemma 3 the problem window is 	-busy, so the set of 	-
busy downward extensions of the problem window is non-
empty. The system has some start time, before which no
task is released, so the set of all 	-busy downward exten-
sions of the problem window is finite. The set is totally or-
dered by length. Therefore, it has a unique maximal ele-
ment. �

Definition 8 (busy window) For any problem window, the
unique maximal ��

��
-busy downward extension whose exis-

tence is guaranteed by Lemma 7 is called the busy window,
and denoted in the rest of this paper by ��� ����.

Observe that a busy window for �� contains a problem
window for �� , and so � �
�.

Lemma 9 (-busy carry-in bound) Let ��� � ��� be a 	-
busy window. Let �� � be the last release time of ��, where
� �� �, before time �. If � �
� the carry-in of �� at � is zero.
If the carry-in of �� at � is nonzero it is between zero and
�� � 	�.

Proof: The proof follows from Lemma 5 and the definition
of 	-busy. �

5. EDF Schedulability

We want to find a close upper bound on the contribu-
tion
� of each task �� to the demand in a particular win-
dow of time. We have bounded the contribution to
� of the
head of the window. We are now ready to derive a bound on
the whole of
� , including the contributions of head, body,
and tail for the EDF case.

The tail of a window with respect to a task �� is the fi-
nal segment, beginning with the release time of the carried-
out job of �� in the window (if any). The carried-out job
has a release time within the window and its next release
time is beyond the window. That is, if the release time of
the carried-out job is ���, ��� � � �� � ��� � ��. If there is
no such job, then the tail of the window is null. We use the
symbol Æ to denote the length of the tail, as shown in Fig-
ure 2.

The body is the middle segment of the window, i.e., the
portion that is not in the head or the tail. Like the head and
the tail, the body may be null (provided the head and tail are
not also null).

Unlike the contribution of the head, the contributions of
the body and tail to
� do not depend on the schedule lead-
ing up to the window. They depend only on the release times
within the window, which in turn are constrained by the pe-
riod �� and by the release time of the carried-in job of �� (if
any).

Let � be the number of jobs of �� released in the body
and tail. If both body and tail are null, � � Æ � �, � � �,
and the contribution of the body and tail is zero. Otherwise,
the body and or the tail is non-null, the combined length of
the body and tail is ������ � ��������Æ, and � � �.

Lemma 10 (EDF demand) For any busy window ��� ����
of task �� (i.e., the maximal 	-busy downward extension of

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

a problem window) and any task ��, the EDF demand �� of
�� in the busy window is no greater than

��� ������� �� � ���

where � � ��������, � � �������	����	 if � � ��,
and � � � otherwise.

Proof: We will identify a worst-case situation, where ��

achieves the largest possible value for a given value of �.
For simplicity, we will risk overbounding �� by consider-
ing a wide range of possibilities, which might include some
cases that would not occur in a specific busy window. We
will start out by looking only at the case where � � ��,
then go back and consider later the case where �
 ��.

Looking at Figure 4, it is easy to see that the maximum
possible contribution of the body and tail to �� is achieved
when successive jobs are released as close together as possi-
ble. Moreover, if one imagines shifting all the release times
in Figure 4 earlier or later, as a block, one can see that the
maximum is achieved when the last job is released just in
time to have its deadline coincide with the end of the win-
dow. That is, the maximum contribution to� from the body
and tail is achieved when Æ � ��. In this case there is a tail
of length �� and the number of complete executions of �� in
the body and tail is � � ���� ���	���� 	.

From Lemma 9, we can see that the contribution � of the
head to �� is a nonincreasing function of �. Therefore, �
is maximized when � is as small as possible. However, re-
ducing � increases the size of the head, and may reduce the
contribution to �� of the body and tail.

Looking at Figure 4, we see that the length of the head,
����, cannot be larger than �� ���� 	���� ��� without
pushing all of the final execution of �� outside the window.
Reducing � below �������� results in at most a linear in-
crease in the contribution of the head, accompanied by a de-
crease of �� in the contribution of the body and tail. There-
fore the value of �� is maximized for � � ��� � �� ��.

We have shown that

�� � ��� � � � ��� ������� �� � ���

It is now time to consider the case where �
 ��. There
can be no body or tail contribution, since it is impossible for
a job of �� to have both release time and deadline within the
window. If �� is nonzero, the only contribution can come
from a carried-in job. Lemma 9 guarantees that this contri-
bution is at most ������ �� � ���,

For � � �����
��

�� 	 � � we have

�� � ������ �� � ��� � ��� ������� �� � ���

�

Lemma 11 (upper bound on EDF load) For any busy
window
�� � � �� with respect to �� the EDF load ��	�

due to �� is at most
�, where

� �

�
��

��
�	 � �����

��
� if � � ��

��
��

��
�	 � �����

��
� � ������

��
if �
 ��

��

Proof:
The objective of the proof is to find an upper bound for

��	� that is independent of �. Lemma 10 says that

��

�
�

��� ������� �� � ���

�

Let � be the function defined by the expression on the right
of the inequality above, i.e.,

���� �
��� ������� �� � ���

�

There are two cases:
Case 1: ������ �� � ��� � �.

We have ����� � �, and � � ��	�. Since we also know
that �
 ��, we have � � ��

��
. From the definition of �, we

have

� � �
�� ��
��

�� 	 �
�� ��
��

� 	 �
�� �� � ��

��

���� �
���
�

�
��
��
�	 �

�� � ��
�

�

�
��
��
�	 �

�� � ��
��

� �
�

Case 2: ������ �� � ��� �� �.
We have �� � �� � �. Since � � ��� � �� ��,

���� �
��� � �� � ��

�

�
���� � ���� � �� � ���� ���

�

We have two subcases, depending on the sign of ������.
Case 2.1: �� � ��� � �. That is, �
 ��

��
.

From the definition of �, it follows that

� �
�� ��
��

� 	 �
�� �� � ��

��

���� �
���� � ���� � �� � ���� ���

�

�
�������

��
��� � ���� � �� � ���� ���

�

�
��
��
�	 �

�� � ��
�

� �
�� � ���

�

�
��
��
�	 �

�� � ��
��

� �
�� � ���

��
�
�

Case 2.2: �� � ��� � �. That is, � � ��

��
.

From the definition of �, it follows that

� �
�� ��
��

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

t + ∆

iTiT

c i c i

iTiT

iT − φ (n−1) T i

c ic i

δ i=d

t

φ

bodyhead tailt’

Figure 4. Densest possible packing of jobs.

���� �
���� � ���� � �� � ���� ���

�

�

����

��
��� � ���� � �� � ���� ���

�

�
��
��
�� �

�� � ��
�

�

�
��
��
�� �

�� � ��
��

� � ��

�

Using the above lemmas, we can prove the following the-
orem, which provides a sufficient condition for schedulabil-
ity.

Theorem 12 (EDF schedulability test) A set of periodic
tasks ��	

 	 �� is schedulable on � processors using pre-
emptive EDF scheduling if, for every task ��,

��

���

�����	 ��� � ����
��
��

� �
��
��

(1)

where � is as defined in Lemma 11.

Proof: The proof is by contradiction. Suppose some task
misses a deadline. We will show that this leads to a contra-
diction of (1).

Let �� be the first task to miss a deadline and 	�	 � ���
be a busy window for ��, as in Lemma 7. Since 	�	 ���� is
��

��
-busy we have
�� � ���� ��

��
� � ��

��
. By Lemma 11,

��� � ��, for � �
	

 	 �. Since ��� is the first missed
deadline, we know that
��� � �. It follows that

��

���

�����	 ��� �

�
� ����

��
��

� �
��
��

The above is a contradiction of (1).�
The schedulability test above must be checked individu-

ally for each task ��. If we are willing to sacrifice some pre-
cision, there is a simpler test that only needs to be checked
once for the entire system of tasks.

Corollary 13 (simplified EDF test) A set of periodic tasks
��	

 	 �� is schedulable on � processors using preemp-
tive EDF scheduling if

��

���

�����	
��
��
�� �

�� � ��
����

�� � ���� �� � �

where � � ���� ��
��

� � � �	

 	 �� and ���� �
������ � � � �	

 	 ��.

Sketch of proof:
Corollary 13 is proved by repeating the proof of Theo-

rem 12, adapted to fit the definitions of � and ����. �
Goossens, Funk, and Baruah[8] showed the following:

Corollary 14 (Goossens, Funk, Baruah[8]) A set of peri-
odic tasks ��	

 	 ��, all with deadline equal to period, is
guaranteed to be schedulable on � processors using pre-
emptive EDF scheduling if

��

���

��
��

� ���� �� � �

where � � ��������� � � � �	

 	 ��.

Their proof is derived from a theorem in [7], on schedul-
ing for uniform multiprocessors, which in turn is based on
[16]. This can be shown independently as special case of
Corollary 13, by replacing �� by ��.

The above cited theorem of Gooossens, Funk, and
Baruah is a generalization of a result of Srinivasan and
Baruah[18], who defined a periodic task set ���	 ��	

 ���
to be a light system on � processors if it satisfies the fol-
lowing properties:

1.
�

�

���

��

��
� �

�

����

2. ��

��
� �

����
, for � � � � �.

They then proved the following theorem.

Theorem 15 (Srinivasan, Baruah[18]) Any periodic task
system that is light on � processors is scheduled to meet all
deadlines on � processors by EDF.

The above result is a special case of Corollary 14, taking
� � ���
�� ��.

6. DM Schedulability

The analysis of deadline monotonic schedulability is
similar to that given above for the EDF case, with a few
critical differences.

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

Lemma 16 (DM demand) For any busy window ��� ����
for �� and any task ��, the DM demand �� of �� in the busy
window is no greater than ��� � ������ �� � ���, where
� � �	��Æ���	���
, � � �	��Æ���, Æ� � �� if
 � �,
and Æ� �
� if
 � �.

Sketch of proof:
The full analysis is given in [5]. We first consider the

case where
 � �, and then consider the special case where

 � �. Looking at Figure 5, one can see that �� is maxi-
mized for
 � � when Æ� � �� and � � �	� � �� ��.

For the case
 � � it is not possible to have Æ� � ��.
Since �� is the problem job, it must have a deadline at the
end of the busy window. Instead of the situation in Figure 5,
for �� the densest packing of jobs is as shown in Figure 6.
That is, the difference for this case is that the length Æ� of
the tail is
� instead of ��.

The number of periods of �� spanning the busy window
in both is � � �	� � Æ���	�� �
, and the maximum con-
tribution of the head is � � ������ �� � ���. All differ-
ences are accounted for by the fact that Æ� �
� instead of
��. �

Lemma 17 (upper bound on DM load) For any busy
window ��� � � �� with respect to task �� the DM load
���� due to ��,
 � �, is at most

�� �

�
��

��
	
 � ���Æ�

��
� if � � ��

��
��

��
	
 � ���Æ�

��
� � ������

��
if � � ��

��

where Æ� � �� for
 � �, and Æ� �
�.

The above lemma leads to the following DM schedula-
bility test.

Theorem 18 (DM schedulability test) A set of peri-
odic tasks is schedulable on � processors using pre-
emptive deadline-monotonic scheduling if, for every task
��,

����
���

�� � �	
�
��

�

�

where �� is as defined in Lemma 17.

The proof is given in [5]. It is similar to that of Theo-
rem 12, but using the appropriate lemmas for DM schedul-
ing.

Corollary 19 (simplified DM test) A set of periodic tasks
��� � � � � �� is schedulable on � processors using preemp-
tive DM scheduling if

��
���

��
	�
	
 �

	� � Æ�

�

� � �	
� �� � �

where � � ���� ��
��

�
 �
� � � � � ��, Æ� � �� for
 � �,
and Æ� �
�.

Corollary 19 is proved by repeating the proof of Theo-
rem 18, adapted to fit the definition of �.

If we assume the deadline of each task is equal to its pe-
riod the schedulability condition of Corollary 19 for dead-
line monotone scheduling becomes a lower bound on the
minimum achievable utilization for rate monotone schedul-
ing.

Corollary 20 (RM utilization bound) A set of peri-
odic tasks, all with deadline equal to period, is guaranteed
to be schedulable on � processors, � � �, using preemp-
tive rate monotonic scheduling if

��
���

��
	�

�
�

�
	
� �� � �

where � � ���� ��
��

�
 �
� � � � � ��.

The proof, which is given in [5], is similar to that of The-
orem 18.

Analogously to Funk, Goossens, and Baruah[7], Ander-
sson, Baruah, and Jonsson[2] defined a periodic task set
���� ��� � � � ��� to be a light system on � processors if it
satisfies the following properties:

1.
�

�

���

��

��
� �

�

����

2. ��

��
� �

����
, for
 �
 � �.

They then proved the following theorem.

Theorem 21 (Andersson, Baruah, Jonsson[2]) Any peri-
odic task system that is light on � processors is scheduled
to meet all deadlines on � processors by the preemptive
Rate Monotonic scheduling algorithm.

The above result is a special case of our Corollary 20. If
we take � � ��	�����, it follows that the system of tasks
is schedulable to meet deadlines if

��
���

��
	�

�
�

�
	
�

�

��� �
� �

�

��� �
�

��

��� �

Baruah and Goossens[6] proved the following similar re-
sult.

Corollary 22 (Baruah, Goossens[6]) A set of tasks, all
with deadline equal to period, is guaranteed to be schedu-
lable on � processors using RM scheduling if ��

��
�
��

for
 �
� � � � � � and
�

�

���

��

��
� ���.

This is a slightly weakened special case of our Corol-
lary 20. For � �
��, it follows that the system of tasks is
schedulable to meet deadlines if

����
���

��
	�

�
�

�
	
�
��� �
�� � ��� �
��

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

iT

c ic ic i

id

iT − φ

c i

iT iTiT

(n−1) T i

t + ∆

φ

headtt’ body tail

=c iδ

. . .

Figure 5. Densest possible packing of jobs for ��, � � �.

t + ∆

Tk k(n−1) T

TkTk TkTk

c kc k c k c k

dk

φ

headtt’ body tail

− φ = d kδ

. . .

Figure 6. Densest possible packing of jobs for ��.

7. Ramifications

The theorems and corollaries above are intended for use
as schedulability tests. They can be applied directly to prove
that a task set will meet deadlines with DM or RM schedul-
ing, either before run time for a fixed set of tasks or dur-
ing run time as an admission test for a system with a dy-
namic set of tasks. With the simpler forms, one computes
� and then checks the schedulability condition once for the
entire task set. With the more general forms, one checks the
schedulability condition for each task. In the latter case the
specific value(s) of � for which the test fails provide some
indication of where the problem lies.

The schedulability tests of Theorems 12 and 18 allow
preperiod deadlines, but are more complicated than the cor-
responding utilization bound tests. It is natural to wonder
whether this extra complexity gains anything over the well
known technique of “padding” execution times and then
using the utilization bound test. By padding the execution
times we mean that if a task �� has execution time �� and
deadline �� � ��, we replace it by � �

� , where ��

� � ��������
and ��

� � � �

� � ��.
With deadline monotonic scheduling, the original task ��

can be scheduled to meet its deadline if the following con-
dition holds for � �

�:

��

�

��
�
�

���

��
��

�
�

�
��� ��� � ��

where � � ��������
��
�

��
� ��.

There are cases where this test is less accurate than that
of Theorem 18. Supose we have three processors. Con-

sider the set of three tasks (one per processor) with periods
�� � �� � �� �� �, deadlines �� � �� � �, �� � �	�,
and compute times �� � �� � �� � �		. That is, all the
tasks have the same period and the same execution time,
and all have deadline equal to period except for the third
task, whose deadline is half the period. If we apply the test
above to ��, we have ��

�
� �		��	� �
		, and �� �
		.

The utilization test fails, as follows:

��

���

�

	
�

	
�

��

�

�
���
		� �
		 �

�

On the other hand, the task set passes the test of Theorem
18, as follows:

��

���

��

�
�

�

�
�

��

�
�
��� �		� �

��

�

A similar padding technique can be applied for EDF, but
again it is sometimes less accurate than Theorem 12.

Of course, these schedulability tests are only sufficient
conditions for schedulability. They are very conservative,
in the same way the Liu and Layland ������ � �� utiliza-
tion bound is conservative. Like that bound, they are still of
practical value.

Though these tests are not tight in the sense of being nec-
essary conditions for schedulability, Goossens, Funk, and
Baruah[8] showed that the utilization test for multiproces-
sor EDF scheduling is tight in the sense that there is no uti-
lization bound ��
 ��� � �� � � �
, where

 � and
� � ������	�� � � � �� � � � � ��, for which � � �� guar-
antees EDF schedulability.

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

Since Goossens, Funk, and Baruah[8] were able to show
that the EDF utilization bound is tight it is natural to won-
der whether the same is true of the RM utilization test. We
can show that it is not.

Theorem 23 (looseness of RM utilization bound) There
exist task sets that are not feasible with preemptive RM
scheduling on � processors and have utilization arbi-
trarily close to � � � ��� �

��� �, where � is the maximum
single-task utilization.

Proof: The task set and analysis are derived from Liu and
Layland[13]. The difference is that here there are � proces-
sors instead of one, and the utilization of the longest-period
task is bounded by a �.

The task set contains � � ���� tasks where � is an ar-
bitrary integer greater than or equal to 1. The task execution
times and periods are defined in terms of a set of parame-
ters ��� � � � � ���� as follows:

���������� � �� for � � � � �� � � 	 � �

��������� � ���� � �� for � � � � �� � � 	 � �

�� � ����

� � �� � �

��

���

����� � ���

� �� � ����� � �

����

���

�� � �

����

���

�� � ���

� ��� � ��

These constraints guarantee that task �� barely has time
to complete if all � tasks are released together at time zero.
The RM schedule will have all � processors busy execut-
ing tasks ��� � � � � ���� for

��

��� ��� � �� �
� out of the
�� available time units, leaving exactly
� units to complete
��.

If ��
��

� �, we have

��� �
� � ��� � ��

�� �
���
� � �

� ����

We will choose ��� � � � � ���� to minimize the total uti-
lization, which is

 � ��

��
���

�
���� � ��

��

� ���

�
�

��
���

����
��

�
� ��

The partial derivatives of
 with respect to �� are

�

���
� ��

�

�� � ����
�

��
���

�

�

���
� ��

�

����
�

����
���

� for � � � � �

�

���
� ��

�

����
�

���
�� � �����

�

Since the second partial derivatives are all positive, a
unique global minimum exists when all the first partial
derivatives are zero. Solving the equations above for zero,
we get

��
��

�
�

�� � ����
�

����
��

����
��

�
��
����

for � � � � �

Let � �
����
��

� � � � � ��
��

. It follows that

�� �

��
���

����
��

�
����
��

�
�

�� � ��

� � �
�

� � �
�
�
�

 � ������� �� � ����

�
�

�

� � �
�
�
� � �

�

L’Hôpital’s Rule can be applied to find the limit of the
above expression for large �, which is ��� ��� �

��� �. �
We conjecture that the upper bound on the minimum

achievable RM utilization achieved by the example above
may be tight.

Srinivasan and Baruah[18] and Andersson, Baruah, and
Jonsson[2] showed how to relax the restriction that
���� �
� in the utilization tests, for situations where there are a
few high-utilization tasks. The two papers propose EDF and
RM versions of a hybrid scheduling policy. They call this
EDF/RM-US[�], where � � ������ �� (� � ������

��).
EDF(RM)-US[�]:

(heavy task rule) If
���� � � then schedule ��’s jobs at
maximum priority.
(light task rule) If
���� � � then schedule ��’s jobs ac-
cording to their normal EDF (RM) priorities.

They then proved two theorems, which we paraphrase
and combine as follows:

Theorem 24 (SB[18] & ABJ[2]) Algorithm EDF(RM)-
US[�] correctly schedules on � processors any periodic
task system with total utilization
 � ��.

The proof is based on the observation that the upper
bound on total utilization guarantees that the number of
heavy tasks cannot exceed �. The essence of the argument
is that the algorihtm can do no worse than scheduling each
of the heavy tasks on its own processor, and then schedul-
ing the remainder (which must must be light on the remain-
ing processors) using the regular algorithm (EDF or RM).

The above result can be generalized slightly, as follows:

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

Theorem 25 Algorithm EDF(RM)-US[�] correctly sched-
ules on � processors any periodic task system such that
only � tasks (� � � � �) have utilization greater than
� and the utilization of the remaining tasks is at most
��� ����� �� � � (���� �������� �� � �).

Proof: As argued by Srinivasan and Baruah, the perfor-
mance of this algorithm cannot be worse than an algorithm
that dedicates one processor to each of the heavy tasks,
and uses EDF (RM) to schedule the remaining tasks on the
remaining processors. The utlization bound theorem then
guarantees the remaining tasks can be scheduled on the re-
maining processors. �

If there is a need to support preperiod deadlines, this
idea can be taken further, by changing the “heavy task rule”
to single out for special treatment a few tasks that fail the
test conditions of one of our schedulability tests that allows
preperiod deadlines, and run the rest of the tasks using EDF
(DM) scheduling.

8. Conclusion and Future Work

We have demonstrated efficiently computable schedu-
lability tests for EDF and DM scheduling on a homoge-
neous multiprocessor system, which allow preperiod dead-
lines. These can be applied statically, or applied dynami-
cally as an admission test. Besides extending and general-
izing previously known utlization-based tests for EDF and
RM multiprocessor schedulability by supporting pre-period
deadlines, we also provide a distinct and independent proof
technique.

In future work, we plan to look at how the utilization
bounds presented here for dynamic processor assignment
bear on the question of whether to use static or dynamic
processor assignment[1, 15, 12]. We have some prior ex-
perience, dating back to 1991[17]) with an implementation
of a fixed-priority multiprocessor kernel that supported dy-
namic migration of tasks. However, that experince is now
out of date, due to advances in memory and TLB caching
that today impose a much larger penalty for moving a task
between processors. We have ignored that penalty in the
current paper. A more complete analysis will require con-
sideration of this penalty.

References

[1] B. Andersson, J. Jonsson, “Fixed-priority preemptive multi-
processor scheduling: to partition or not to partition”, Pro-
ceedings of the International Conference on Real-Time Com-
puting Systems and Applications, Cheju Island, Korea (De-
cember 2000).

[2] B. Andersson, S. Baruah, J. Jonsson, “Static-priority schedul-
ing on multiprocessors”, Proceedings of the IEEE Real-Time
Systems Symposium, London, England (December 2001).

[3] T.P. Baker, “Stack-based scheduling of real-time processes”,
The Real-Time Systems Journal 3,1 (March 1991) 67-100.

(Reprinted in Advances in Real-Time Systems, IEEE Com-
puter Society Press (1993) 64-96).

[4] “An Analysis of EDF scheduling on a Multipro-
cessor”, technical report TR-030202, Florida State
University Department of Computer Science, Tal-
lahassee, Florida (February 2003). (available at
http://www.cs.fsu.edu/research/reports)

[5] T.P. Baker, “An analysis of deadline-monotonic schedul-
ing on a multiprocessor”, technical report TR-030301,
Florida State University Department of Computer Sci-
ence, Tallahassee, Florida (February 2003). (available at
http://www.cs.fsu.edu/research/reports)

[6] S. Baruah, Joel Goossens, “Rate-monotonic scheduling on
uniform multiprocessors”, UNC-CS TR02-025, University of
North Carolina Department of Computer Science (May 2002).

[7] S. Funk, J. Goossens, S. Baruah, “On-line scheduling on uni-
form multiprocessors”, Proceedings of the IEEE Real-Time
Systems Syposium, IEEE Computer Society Press (December
2001).

[8] J. Goossens, S. Funk, S. Baruah, “Priority-driven scheduling
of periodic task systems on multiprocessors”, technical report
UNC-CS TR01-024, University of North Carolina Computer
Science Department, Real Time Systems, Kluwer, (to appear).

[9] S.K. Dhall, C.L. Liu, “On a real-time scheduling problem”,
Operations Research 26 (1) (1998) 127-140.

[10] T.M. Ghazalie and T.P. Baker, “Aperiodic servers in a dead-
line scheduling environment”, the Real-Time Systems Journal
9,1 (July 1995) 31-68.

[11] Lehoczky, J.P., Sha, L., Ding, Y., “The Rate Monotonic
Scheduling Algorithm: Exact Characterization and Average
Case Behavior”, Proceedings of the IEEE Real-Time System
Symposium (1989) 166-171.

[12] J.M. López, M. Garcı́a, J.L. Dı́az, and D.F. Garcı́a, “Worst-
case utilization bound for EDF scheduling on real-time mul-
tiprocessor systems”, Proceedings of the 12th Eurmicro Con-
ference on Real-Time Systems (2000) 25-33.

[13] C.L. Liu and J. W. Layland, “Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment”, JACM 20.1
(January 1973) 46-61.

[14] J. W.S. Liu, Real-Time Systems, Prentice-Hall (2000) 71.
[15] Oh, D.I., and Baker, T.P. “Utilization Bounds for � -

Processor Rate Monotone Scheduling with Stable Processor
Assignment”, Real Time Systems Journal, 15,1, September
1998. 183–193.

[16] C.A. Phillips, C. Stein, E. Torng, J Wein, “Optimal time-
critical scheduling via resource augmentation”, Proceedings
of the Twenty-Ninth Annual ACM Symposium on Theory of
Computing (El Paso, Texas, 1997) 140-149.

[17] P. Santiprabhob, C.S. Chen, T.P. Baker “Ada Run-Time Ker-
nel: The Implementation”, Proceedings of the 1st Software
Engineering Research Forum, Tampa, FL, U.S.A. (November
1991) 89-98.

[18] A. Srinivasan, S. Baruah, “Deadline-based scheduling of pe-
riodic task systems on multiprocessors”, Information Process-
ing Letters 84 (2002) 93-98.

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

